Cargando…

Porphyromonas gingivalis ATCC 33277 promotes intercellular adhesion molecule-1 expression in endothelial cells and monocyte-endothelial cell adhesion through macrophage migration inhibitory factor

BACKGROUND: Porphyromonas gingivalis (P. gingivalis), one of the main pathogenic bacteria involved in periodontitis, induces the expression of intercellular adhesion molecule − 1 (ICAM-1) and monocyte-endothelial cell adhesion. This effect plays a pivotal role in atherosclerosis development. Macroph...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Wanyue, Pan, Yaping, Xu, Qiufang, Wu, Yun, Pan, Jiayu, Hou, Jingya, Lin, Li, Tang, Xiaolin, Li, Chen, Liu, Jingbo, Zhang, Dongmei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5828317/
https://www.ncbi.nlm.nih.gov/pubmed/29482504
http://dx.doi.org/10.1186/s12866-018-1156-1
Descripción
Sumario:BACKGROUND: Porphyromonas gingivalis (P. gingivalis), one of the main pathogenic bacteria involved in periodontitis, induces the expression of intercellular adhesion molecule − 1 (ICAM-1) and monocyte-endothelial cell adhesion. This effect plays a pivotal role in atherosclerosis development. Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine and critically affects atherosclerosis pathogenesis. In this study, we tested the involvement of MIF in the P. gingivalis ATCC 33277-enhanced adhesive properties of endothelial cells. RESULTS: Endothelial MIF expression was enhanced by P. gingivalis ATCC 33277 infection. The MIF inhibitor ISO-1 inhibited ICAM-1 production in endothelial cells, and monocyte-endothelial cell adhesion was induced by P. gingivalis ATCC 33277 infection. However, the addition of exogenous human recombinant MIF to P. gingivalis ATCC 33277-infected endothelial cells facilitated monocyte recruitment by promoting ICAM-1 expression in endothelial cells. CONCLUSIONS: These experiments revealed that MIF in endothelial cells participates in the pro-atherosclerotic lesion formation caused by P. gingivalis ATCC 33277 infection. Our novel findings identify a more detailed pathological role of P. gingivalis ATCC 33277 in atherosclerosis.