Cargando…
Microvessel prediction in H&E Stained Pathology Images using fully convolutional neural networks
BACKGROUND: Pathological angiogenesis has been identified in many malignancies as a potential prognostic factor and target for therapy. In most cases, angiogenic analysis is based on the measurement of microvessel density (MVD) detected by immunostaining of CD31 or CD34. However, most retrievable pu...
Autores principales: | Yi, Faliu, Yang, Lin, Wang, Shidan, Guo, Lei, Huang, Chenglong, Xie, Yang, Xiao, Guanghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5828328/ https://www.ncbi.nlm.nih.gov/pubmed/29482496 http://dx.doi.org/10.1186/s12859-018-2055-z |
Ejemplares similares
-
Automatic extraction of cell nuclei from H&E-stained histopathological images
por: Yi, Faliu, et al.
Publicado: (2017) -
ConvPath: A software tool for lung adenocarcinoma digital pathological image analysis aided by a convolutional neural network
por: Wang, Shidan, et al.
Publicado: (2019) -
High-throughput label-free cell detection and counting from diffraction patterns with deep fully convolutional neural networks
por: Yi, Faliu, et al.
Publicado: (2021) -
Staining Invariant Features for Improving Generalization of Deep Convolutional Neural Networks in Computational Pathology
por: Otálora, Sebastian, et al.
Publicado: (2019) -
Computer-Assisted Annotation of Digital H&E/SOX10 Dual Stains Generates High-Performing Convolutional Neural Network for Calculating Tumor Burden in H&E-Stained Cutaneous Melanoma
por: Nielsen, Patricia Switten, et al.
Publicado: (2022)