Cargando…

Ceramide and Ischemia/Reperfusion Injury

Ceramide, a bioactive membrane sphingolipid, functions as an important second messenger in apoptosis and cell signaling. In response to stresses, it may be generated by de novo synthesis, sphingomyelin hydrolysis, and/or recycling of complex sphingolipids. It is cleared from cells through the activi...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Xingxuan, Schuchman, Edward H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5828470/
https://www.ncbi.nlm.nih.gov/pubmed/29610685
http://dx.doi.org/10.1155/2018/3646725
Descripción
Sumario:Ceramide, a bioactive membrane sphingolipid, functions as an important second messenger in apoptosis and cell signaling. In response to stresses, it may be generated by de novo synthesis, sphingomyelin hydrolysis, and/or recycling of complex sphingolipids. It is cleared from cells through the activity of ceramidases, phosphorylation to ceramide-1-phosphate, or resynthesis into more complex sphingolipids. Ischemia/reperfusion (IR) injury occurs when oxygen/nutrition is rapidly reintroduced into ischemic tissue, resulting in cell death and tissue damage, and is a major concern in diverse clinical settings, including organ resection and transplantation. Numerous reports show that ceramide levels are markedly elevated during IR. Mitochondria are major sites of reactive oxygen species (ROS) production and play a key role in IR-induced and ceramide-mediated cell death and tissue damage. During the development of IR injury, the initial response of ROS and TNF-alpha production activates two major ceramide generating pathways (sphingomyelin hydrolysis and de novo ceramide synthesis). The increased ceramide has broad effects depending on the IR phases, including both pro- and antiapoptotic effects. Therefore, strategies that reduce the levels of ceramide, for example, by modulation of ceramidase and/or sphingomyelinases activities, may represent novel and promising therapeutic approaches to prevent or treat IR injury in diverse clinical settings.