Cargando…
Deep Convolutional Neural Networks Enable Discrimination of Heterogeneous Digital Pathology Images
Pathological evaluation of tumor tissue is pivotal for diagnosis in cancer patients and automated image analysis approaches have great potential to increase precision of diagnosis and help reduce human error. In this study, we utilize several computational methods based on convolutional neural netwo...
Autores principales: | Khosravi, Pegah, Kazemi, Ehsan, Imielinski, Marcin, Elemento, Olivier, Hajirasouliha, Iman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5828543/ https://www.ncbi.nlm.nih.gov/pubmed/29292031 http://dx.doi.org/10.1016/j.ebiom.2017.12.026 |
Ejemplares similares
-
Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization
por: Khosravi, Pegah, et al.
Publicado: (2019) -
A Deep Learning Approach to Diagnostic Classification of Prostate Cancer Using Pathology–Radiology Fusion
por: Khosravi, Pegah, et al.
Publicado: (2021) -
Weakly-supervised tumor purity prediction from frozen H&E stained slides
por: Brendel, Matthew, et al.
Publicado: (2022) -
466 Convolutional Neural Networks and Machine Learning in the Identification of Ultrasonographic Features of Ovarian Morphology
por: Pea, Jeffrey, et al.
Publicado: (2022) -
Digital Image Analysis of Heterogeneous Tuberculosis Pulmonary Pathology in Non-Clinical Animal Models using Deep Convolutional Neural Networks
por: Asay, Bryce C., et al.
Publicado: (2020)