Cargando…
Iterative random forests to discover predictive and stable high-order interactions
Genomics has revolutionized biology, enabling the interrogation of whole transcriptomes, genome-wide binding sites for proteins, and many other molecular processes. However, individual genomic assays measure elements that interact in vivo as components of larger molecular machines. Understanding how...
Autores principales: | Basu, Sumanta, Kumbier, Karl, Brown, James B., Yu, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5828575/ https://www.ncbi.nlm.nih.gov/pubmed/29351989 http://dx.doi.org/10.1073/pnas.1711236115 |
Ejemplares similares
-
RandomForestsGLS: An R package for Random Forests for dependent data
por: Saha, Arkajyoti, et al.
Publicado: (2022) -
A novel random forest approach to revealing interactions and controls on chlorophyll concentration and bacterial communities during coastal phytoplankton blooms
por: Cheng, Yiwei, et al.
Publicado: (2021) -
Veridical data science
por: Yu, Bin, et al.
Publicado: (2020) -
Coexistence in diverse communities with higher-order interactions
por: Gibbs, Theo, et al.
Publicado: (2022) -
Higher-order epistasis and phenotypic prediction
por: Zhou, Juannan, et al.
Publicado: (2022)