Cargando…
A Ternary Hybrid EEG-NIRS Brain-Computer Interface for the Classification of Brain Activation Patterns during Mental Arithmetic, Motor Imagery, and Idle State
The performance of a brain-computer interface (BCI) can be enhanced by simultaneously using two or more modalities to record brain activity, which is generally referred to as a hybrid BCI. To date, many BCI researchers have tried to implement a hybrid BCI system by combining electroencephalography (...
Autores principales: | Shin, Jaeyoung, Kwon, Jinuk, Im, Chang-Hwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5829061/ https://www.ncbi.nlm.nih.gov/pubmed/29527160 http://dx.doi.org/10.3389/fninf.2018.00005 |
Ejemplares similares
-
Toward a compact hybrid brain-computer interface (BCI): Performance evaluation of multi-class hybrid EEG-fNIRS BCIs with limited number of channels
por: Kwon, Jinuk, et al.
Publicado: (2020) -
An Algorithm for Idle-State Detection in Motor-Imagery-Based Brain-Computer Interface
por: Zhang, Dan, et al.
Publicado: (2007) -
Arithmetic Optimization with RetinaNet Model for Motor Imagery Classification on Brain Computer Interface
por: Malibari, Areej A., et al.
Publicado: (2022) -
Performance enhancement of a brain-computer interface using high-density multi-distance NIRS
por: Shin, Jaeyoung, et al.
Publicado: (2017) -
EEG datasets for motor imagery brain–computer interface
por: Cho, Hohyun, et al.
Publicado: (2017)