Cargando…

Attosecond recorder of the polarization state of light

High harmonic generation in multi-color laser fields opens the opportunity of generating isolated attosecond pulses with high ellipticity. Such pulses hold the potential for time-resolving chiral electronic, magnetization, and spin dynamics at their natural timescale. However, this potential cannot...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiménez-Galán, Álvaro, Dixit, Gopal, Patchkovskii, Serguei, Smirnova, Olga, Morales, Felipe, Ivanov, Misha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5829146/
https://www.ncbi.nlm.nih.gov/pubmed/29487288
http://dx.doi.org/10.1038/s41467-018-03167-2
Descripción
Sumario:High harmonic generation in multi-color laser fields opens the opportunity of generating isolated attosecond pulses with high ellipticity. Such pulses hold the potential for time-resolving chiral electronic, magnetization, and spin dynamics at their natural timescale. However, this potential cannot be realized without characterizing the exact polarization state of light on the attosecond timescale. Here we propose and numerically demonstrate a complete solution of this problem. Our solution exploits the extrinsic two-dimensional chirality induced in an atom interacting with the chiral attosecond pulse and a linearly polarized infrared probe. The resulting asymmetry in the photoelectron spectra allows to reconstruct the complete polarization state of the attosecond pulse, including its possible time dependence. The challenging problem of distinguishing circularly polarized, partially polarized, or unpolarized pulses in the extreme ultraviolet range is also resolved. We expect this approach to become the core ingredient for attosecond measurements of chiral-sensitive processes in gas and condensed phase.