Cargando…

RAPD PCR Profile, Antibiotic Resistance, Prevalence of armA Gene, and Detection of KPC Enzyme in Klebsiella pneumoniae Isolates

The increasing prevalence of multidrug-resistant Klebsiella pneumoniae strains isolated from hospitals shows the limitation of recent antibiotics used for bacterial eradication. In this study, 81 K. pneumoniae isolates were collected from three hospitals in Tehran. Antibiotic susceptibility test sho...

Descripción completa

Detalles Bibliográficos
Autores principales: Saadatian Farivar, Arezoo, Nowroozi, Jamileh, Eslami, Gita, Sabokbar, Azar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5829425/
https://www.ncbi.nlm.nih.gov/pubmed/29623139
http://dx.doi.org/10.1155/2018/6183162
Descripción
Sumario:The increasing prevalence of multidrug-resistant Klebsiella pneumoniae strains isolated from hospitals shows the limitation of recent antibiotics used for bacterial eradication. In this study, 81 K. pneumoniae isolates were collected from three hospitals in Tehran. Antibiotic susceptibility test showed the highest rates of resistance to cefotaxim (85.5%) and ceftazidime (78.3%), and the lowest rates of resistance were detected for colistin (16.9%), streptomycin (16.8%), and chloroamphenicol (21.7%). Eleven different resistance patterns were observed. Sixty-six out of 81 isolates (81.5%) were found to be multidrug resistant (MDR), and 35.8% of them belonged to A3 resistance pattern. 7.4% and 66.7% were KPC enzyme and armA gene positive, respectively. RAPD PCR assay of these bacteria showed 5 clusters, 16 single types, and 14 common types, and there was not any correlation between genetic patterns of the isolates and presence of resistance agents. Simultaneous detection of resistance-creating agents could be an important challenge for combination therapy of MDR K. pneumoniae-caused infections.