Cargando…

Hepatic metabolomic profiling changes along with postnatal liver maturation in breeder roosters

To understand the hepatic metabolic changes during postnatal liver maturation process in breeder roosters, we investigated the hepatic metabolites composition of 1-day-old, 42-day-old, and 35-week-old breeder roosters using gas chromatography-mass spectrometer (GC-MS). Comprehensive multivariate dat...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Shengru, Liu, Yanli, Zhu, Liqin, Han, Di, Bello Bodinga, Musa, Yang, Xiaojun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5829496/
https://www.ncbi.nlm.nih.gov/pubmed/29358164
http://dx.doi.org/10.1242/bio.028944
Descripción
Sumario:To understand the hepatic metabolic changes during postnatal liver maturation process in breeder roosters, we investigated the hepatic metabolites composition of 1-day-old, 42-day-old, and 35-week-old breeder roosters using gas chromatography-mass spectrometer (GC-MS). Comprehensive multivariate data analyses were applied to identify the distinguishing metabolites of liver. 84 different kinds of distinguishing metabolites were identified between the livers of 1-day-old and 42-day-old breeder roosters, and 58 different kinds of distinguishing metabolites were identified between the livers from 42-day-old and 35-week-old breeder roosters. Further pathway annotations revealed that the hepatic metabolism was extensively remodeled during the postnatal liver maturation process. The antioxidant capacity of the liver and metabolism of carbohydrates, proteins, amino acids, fats, cholesterols, nucleic acids, and vitamins were all significantly changed at different growing periods after birth. Specifically, we found that the hepatic amino acid metabolic function was continuously enhanced from 1-day-old to 35-week-old roosters. However, the glucose and lipid metabolic functions were weakened from 1-day-old to 42-day-old roosters and then elevated from 42-day-old to 35-week-old roosters. In conclusion, the present study revealed that the metabolomic changes are related to the adaption of liver functions in breeder roosters.