Cargando…

Compact coherence enhancement by subharmonic self-seeding in X-ray free-electron laser facilities

X-ray free-electron lasers (FELs) are cutting-edge scientific tools able to generate transversely coherent radiation with very high power and ultra-short pulse durations. The self-seeding mechanism has been proven to increase the longitudinal coherence of the FEL radiation but its efficiency could b...

Descripción completa

Detalles Bibliográficos
Autores principales: Prat, Eduard, Reiche, Sven
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5829677/
https://www.ncbi.nlm.nih.gov/pubmed/29488910
http://dx.doi.org/10.1107/S1600577518000395
Descripción
Sumario:X-ray free-electron lasers (FELs) are cutting-edge scientific tools able to generate transversely coherent radiation with very high power and ultra-short pulse durations. The self-seeding mechanism has been proven to increase the longitudinal coherence of the FEL radiation but its efficiency could be significantly improved, especially for soft X-rays. This paper proposes the enhancement of the performance of self-seeding by combining it with the harmonic generation mechanism. In particular, by starting the process with a subharmonic of the wavelength of interest, the coherence of the produced radiation is improved, the undulator beamline becomes more compact, and the monochromator realization is simplified. Numerical simulations for SwissFEL are presented showing that the method can be employed, within a given space, to increase the spectral brightness by one order of magnitude or more with respect to standard self-seeding. This coherence enhancement will be fundamental for many photon science applications and techniques such as resonant inelastic X-ray scattering.