Cargando…
Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU
OBJECTIVES: We validate a machine learning-based sepsis-prediction algorithm (InSight) for the detection and prediction of three sepsis-related gold standards, using only six vital signs. We evaluate robustness to missing data, customisation to site-specific data using transfer learning and generali...
Autores principales: | Mao, Qingqing, Jay, Melissa, Hoffman, Jana L, Calvert, Jacob, Barton, Christopher, Shimabukuro, David, Shieh, Lisa, Chettipally, Uli, Fletcher, Grant, Kerem, Yaniv, Zhou, Yifan, Das, Ritankar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5829820/ https://www.ncbi.nlm.nih.gov/pubmed/29374661 http://dx.doi.org/10.1136/bmjopen-2017-017833 |
Ejemplares similares
-
Using Transfer Learning for Improved Mortality Prediction in a Data-Scarce Hospital Setting
por: Desautels, Thomas, et al.
Publicado: (2017) -
Prediction of Sepsis in the Intensive Care Unit With Minimal Electronic Health Record Data: A Machine Learning Approach
por: Desautels, Thomas, et al.
Publicado: (2016) -
High-performance detection and early prediction of septic shock for alcohol-use disorder patients
por: Calvert, Jacob, et al.
Publicado: (2016) -
Prediction of Acute Kidney Injury With a Machine Learning Algorithm
Using Electronic Health Record Data
por: Mohamadlou, Hamid, et al.
Publicado: (2018) -
Using electronic health record collected clinical variables to predict medical intensive care unit mortality
por: Calvert, Jacob, et al.
Publicado: (2016)