Cargando…
Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors
While typically investigated as a microorganism capable of extracellular electron transfer to minerals or anodes, Shewanella oneidensis MR-1 can also facilitate electron flow from a cathode to terminal electron acceptors, such as fumarate or oxygen, thereby providing a model system for a process tha...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5829830/ https://www.ncbi.nlm.nih.gov/pubmed/29487241 http://dx.doi.org/10.1128/mBio.02203-17 |
_version_ | 1783302889782902784 |
---|---|
author | Rowe, Annette R. Rajeev, Pournami Jain, Abhiney Pirbadian, Sahand Okamoto, Akihiro Gralnick, Jeffrey A. El-Naggar, Mohamed Y. Nealson, Kenneth H. |
author_facet | Rowe, Annette R. Rajeev, Pournami Jain, Abhiney Pirbadian, Sahand Okamoto, Akihiro Gralnick, Jeffrey A. El-Naggar, Mohamed Y. Nealson, Kenneth H. |
author_sort | Rowe, Annette R. |
collection | PubMed |
description | While typically investigated as a microorganism capable of extracellular electron transfer to minerals or anodes, Shewanella oneidensis MR-1 can also facilitate electron flow from a cathode to terminal electron acceptors, such as fumarate or oxygen, thereby providing a model system for a process that has significant environmental and technological implications. This work demonstrates that cathodic electrons enter the electron transport chain of S. oneidensis when oxygen is used as the terminal electron acceptor. The effect of electron transport chain inhibitors suggested that a proton gradient is generated during cathode oxidation, consistent with the higher cellular ATP levels measured in cathode-respiring cells than in controls. Cathode oxidation also correlated with an increase in the cellular redox (NADH/FMNH(2)) pool determined with a bioluminescence assay, a proton uncoupler, and a mutant of proton-pumping NADH oxidase complex I. This work suggested that the generation of NADH/FMNH(2) under cathodic conditions was linked to reverse electron flow mediated by complex I. A decrease in cathodic electron uptake was observed in various mutant strains, including those lacking the extracellular electron transfer components necessary for anodic-current generation. While no cell growth was observed under these conditions, here we show that cathode oxidation is linked to cellular energy acquisition, resulting in a quantifiable reduction in the cellular decay rate. This work highlights a potential mechanism for cell survival and/or persistence on cathodes, which might extend to environments where growth and division are severely limited. |
format | Online Article Text |
id | pubmed-5829830 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-58298302018-03-05 Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors Rowe, Annette R. Rajeev, Pournami Jain, Abhiney Pirbadian, Sahand Okamoto, Akihiro Gralnick, Jeffrey A. El-Naggar, Mohamed Y. Nealson, Kenneth H. mBio Research Article While typically investigated as a microorganism capable of extracellular electron transfer to minerals or anodes, Shewanella oneidensis MR-1 can also facilitate electron flow from a cathode to terminal electron acceptors, such as fumarate or oxygen, thereby providing a model system for a process that has significant environmental and technological implications. This work demonstrates that cathodic electrons enter the electron transport chain of S. oneidensis when oxygen is used as the terminal electron acceptor. The effect of electron transport chain inhibitors suggested that a proton gradient is generated during cathode oxidation, consistent with the higher cellular ATP levels measured in cathode-respiring cells than in controls. Cathode oxidation also correlated with an increase in the cellular redox (NADH/FMNH(2)) pool determined with a bioluminescence assay, a proton uncoupler, and a mutant of proton-pumping NADH oxidase complex I. This work suggested that the generation of NADH/FMNH(2) under cathodic conditions was linked to reverse electron flow mediated by complex I. A decrease in cathodic electron uptake was observed in various mutant strains, including those lacking the extracellular electron transfer components necessary for anodic-current generation. While no cell growth was observed under these conditions, here we show that cathode oxidation is linked to cellular energy acquisition, resulting in a quantifiable reduction in the cellular decay rate. This work highlights a potential mechanism for cell survival and/or persistence on cathodes, which might extend to environments where growth and division are severely limited. American Society for Microbiology 2018-02-27 /pmc/articles/PMC5829830/ /pubmed/29487241 http://dx.doi.org/10.1128/mBio.02203-17 Text en Copyright © 2018 Rowe et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Rowe, Annette R. Rajeev, Pournami Jain, Abhiney Pirbadian, Sahand Okamoto, Akihiro Gralnick, Jeffrey A. El-Naggar, Mohamed Y. Nealson, Kenneth H. Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors |
title | Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors |
title_full | Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors |
title_fullStr | Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors |
title_full_unstemmed | Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors |
title_short | Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors |
title_sort | tracking electron uptake from a cathode into shewanella cells: implications for energy acquisition from solid-substrate electron donors |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5829830/ https://www.ncbi.nlm.nih.gov/pubmed/29487241 http://dx.doi.org/10.1128/mBio.02203-17 |
work_keys_str_mv | AT roweannetter trackingelectronuptakefromacathodeintoshewanellacellsimplicationsforenergyacquisitionfromsolidsubstrateelectrondonors AT rajeevpournami trackingelectronuptakefromacathodeintoshewanellacellsimplicationsforenergyacquisitionfromsolidsubstrateelectrondonors AT jainabhiney trackingelectronuptakefromacathodeintoshewanellacellsimplicationsforenergyacquisitionfromsolidsubstrateelectrondonors AT pirbadiansahand trackingelectronuptakefromacathodeintoshewanellacellsimplicationsforenergyacquisitionfromsolidsubstrateelectrondonors AT okamotoakihiro trackingelectronuptakefromacathodeintoshewanellacellsimplicationsforenergyacquisitionfromsolidsubstrateelectrondonors AT gralnickjeffreya trackingelectronuptakefromacathodeintoshewanellacellsimplicationsforenergyacquisitionfromsolidsubstrateelectrondonors AT elnaggarmohamedy trackingelectronuptakefromacathodeintoshewanellacellsimplicationsforenergyacquisitionfromsolidsubstrateelectrondonors AT nealsonkennethh trackingelectronuptakefromacathodeintoshewanellacellsimplicationsforenergyacquisitionfromsolidsubstrateelectrondonors |