Cargando…
A simulation study on the effects of neuronal ensemble properties on decoding algorithms for intracortical brain–machine interfaces
BACKGROUND: Intracortical brain–machine interfaces (BMIs) harness movement information by sensing neuronal activities using chronic microelectrode implants to restore lost functions to patients with paralysis. However, neuronal signals often vary over time, even within a day, forcing one to rebuild...
Autores principales: | Kim, Min-Ki, Sohn, Jeong-woo, Lee, Bongsoo, Kim, Sung-Phil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5830057/ https://www.ncbi.nlm.nih.gov/pubmed/29486778 http://dx.doi.org/10.1186/s12938-018-0459-7 |
Ejemplares similares
-
Neural Decoding for Intracortical Brain–Computer Interfaces
por: Dong, Yuanrui, et al.
Publicado: (2023) -
Decoding Kinematic Information From Primary Motor Cortex Ensemble Activities Using a Deep Canonical Correlation Analysis
por: Kim, Min-Ki, et al.
Publicado: (2020) -
Reinforcement Learning Based Fast Self-Recalibrating Decoder for Intracortical Brain–Machine Interface
por: Zhang, Peng, et al.
Publicado: (2020) -
The influence of non-stationarity of spike signals on decoding performance in intracortical brain-computer interface: a simulation study
por: Wan, Zijun, et al.
Publicado: (2023) -
Intracortical Brain-Machine Interfaces Advance Sensorimotor Neuroscience
por: Schroeder, Karen E., et al.
Publicado: (2016)