Cargando…
lme4qtl: linear mixed models with flexible covariance structure for genetic studies of related individuals
BACKGROUND: Quantitative trait locus (QTL) mapping in genetic data often involves analysis of correlated observations, which need to be accounted for to avoid false association signals. This is commonly performed by modeling such correlations as random effects in linear mixed models (LMMs). The R pa...
Autores principales: | Ziyatdinov, Andrey, Vázquez-Santiago, Miquel, Brunel, Helena, Martinez-Perez, Angel, Aschard, Hugues, Soria, Jose Manuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5830078/ https://www.ncbi.nlm.nih.gov/pubmed/29486711 http://dx.doi.org/10.1186/s12859-018-2057-x |
Ejemplares similares
-
Meta-eQTL: a tool set for flexible eQTL meta-analysis
por: Di Narzo, Antonio Fabio, et al.
Publicado: (2014) -
lme4GS: An R-Package for Genomic Selection
por: Caamal-Pat, Diana, et al.
Publicado: (2021) -
Efficient analysis of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr
por: Privé, Florian, et al.
Publicado: (2018) -
Kimma: flexible linear mixed effects modeling with kinship covariance for RNA-seq data
por: Dill-McFarland, Kimberly A, et al.
Publicado: (2023) -
MEIRLOP: improving score-based motif enrichment by incorporating sequence bias covariates
por: Delos Santos, Nathaniel P., et al.
Publicado: (2020)