Cargando…
A Cross-Domain Collaborative Filtering Algorithm Based on Feature Construction and Locally Weighted Linear Regression
Cross-domain collaborative filtering (CDCF) solves the sparsity problem by transferring rating knowledge from auxiliary domains. Obviously, different auxiliary domains have different importance to the target domain. However, previous works cannot evaluate effectively the significance of different au...
Autores principales: | Yu, Xu, Lin, Jun-yu, Jiang, Feng, Du, Jun-wei, Han, Ji-zhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5830279/ https://www.ncbi.nlm.nih.gov/pubmed/29623088 http://dx.doi.org/10.1155/2018/1425365 |
Ejemplares similares
-
Mathematical algorithms for linear regression
por: Späth, Helmuth, et al.
Publicado: (1991) -
Algorithms are not neutral: Bias in collaborative filtering
por: Stinson, Catherine
Publicado: (2022) -
Find Outliers of Image Edge Consistency by Weighted Local Linear Regression with Equality Constraints †
por: Zhu, Mingzhu, et al.
Publicado: (2021) -
Domain generation algorithms detection with feature extraction and Domain Center construction
por: Sun, Xinjie, et al.
Publicado: (2023) -
BOSO: A novel feature selection algorithm for linear regression with high-dimensional data
por: Valcárcel, Luis V., et al.
Publicado: (2022)