Cargando…
Habitat selection and seasonal movements of young bearded seals (Erignathus barbatus) in the Bering Sea
The first year of life is typically the most critical to a pinniped’s survival, especially for Arctic phocids which are weaned at only a few weeks of age and left to locate and capture prey on their own. Their seasonal movements and habitat selection are therefore important factors in their survival...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5830299/ https://www.ncbi.nlm.nih.gov/pubmed/29489846 http://dx.doi.org/10.1371/journal.pone.0192743 |
Sumario: | The first year of life is typically the most critical to a pinniped’s survival, especially for Arctic phocids which are weaned at only a few weeks of age and left to locate and capture prey on their own. Their seasonal movements and habitat selection are therefore important factors in their survival. During a cooperative effort between scientists and subsistence hunters in October 2004, 2005, and 2006, 13 female and 13 male young (i.e., age <2) bearded seals (Erignathus barbatus) were tagged with satellite-linked dive recorders (SDRs) in Kotzebue Sound, Alaska. Shortly after being released, most seals moved south with the advancing sea-ice through the Bering Strait and into the Bering Sea where they spent the winter and early spring. The SDRs of 17 (8 female and 9 male) seals provided frequent high-quality positions in the Bering Sea; their data were used in our analysis. To investigate habitat selection, we simulated 20 tracks per seal by randomly selecting from the pooled distributions of the absolute bearings and swim speeds of the tagged seals. For each point in the observed and simulated tracks, we obtained the depth, sea-ice concentration, and the distances to sea-ice, open water, the shelf break and coastline. Using logistic regression with a stepwise model selection procedure, we compared the simulated tracks to those of the tagged seals and obtained a model for describing habitat selection. The regression coefficients indicated that the bearded seals in our study selected locations near the ice edge. In contrast, aerial surveys of the bearded seal population, predominantly composed of adults, indicated higher abundances in areas farther north and in heavier pack ice. We hypothesize that this discrepancy is the result of behavioral differences related to age. Ice concentration was also shown to be a statistically significant variable in our model. All else being equal, areas of higher ice concentration are selected for up to about 80%. The effects of sex and bathymetry were not statistically significant. The close association of young bearded seals to the ice edge in the Bering Sea is important given the likely effects of climate warming on the extent of sea-ice and subsequent changes in ice edge habitat. |
---|