Cargando…
Cell-based glycan arrays for probing glycan–glycan binding protein interactions
Glycan microarrays provide a high-throughput means of profiling the interactions of glycan-binding proteins with their ligands. However, the construction of current glycan microarray platforms is time consuming and expensive. Here, we report a fast and cost-effective method for the assembly of cell-...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5830402/ https://www.ncbi.nlm.nih.gov/pubmed/29491407 http://dx.doi.org/10.1038/s41467-018-03245-5 |
Sumario: | Glycan microarrays provide a high-throughput means of profiling the interactions of glycan-binding proteins with their ligands. However, the construction of current glycan microarray platforms is time consuming and expensive. Here, we report a fast and cost-effective method for the assembly of cell-based glycan arrays to probe glycan–glycan-binding protein interactions directly on the cell surface. Chinese hamster ovary cell mutants with a narrow and relatively homogeneous repertoire of glycoforms serve as the foundation platforms to develop these arrays. Using recombinant glycosyltransferases, sialic acid, fucose, and analogs thereof are installed on cell-surface glycans to form cell-based arrays displaying diverse glycan epitopes that can be probed with glycan-binding proteins by flow cytometry. Using this platform, high-affinity glycan ligands are discovered for Siglec-15—a sialic acid-binding lectin involved in osteoclast differentiation. Incubating human osteoprogenitor cells with cells displaying a high-affinity Siglec-15 ligand impairs osteoclast differentiation, demonstrating the utility of this cell-based glycan array technology. |
---|