Cargando…

Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells

Nanoscale or single-cell technologies are critical for biomedical applications. However, current mass spectrometry (MS)-based proteomic approaches require samples comprising a minimum of thousands of cells to provide in-depth profiling. Here, we report the development of a nanoPOTS (nanodroplet proc...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Ying, Piehowski, Paul D., Zhao, Rui, Chen, Jing, Shen, Yufeng, Moore, Ronald J., Shukla, Anil K., Petyuk, Vladislav A., Campbell-Thompson, Martha, Mathews, Clayton E., Smith, Richard D., Qian, Wei-Jun, Kelly, Ryan T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5830451/
https://www.ncbi.nlm.nih.gov/pubmed/29491378
http://dx.doi.org/10.1038/s41467-018-03367-w
Descripción
Sumario:Nanoscale or single-cell technologies are critical for biomedical applications. However, current mass spectrometry (MS)-based proteomic approaches require samples comprising a minimum of thousands of cells to provide in-depth profiling. Here, we report the development of a nanoPOTS (nanodroplet processing in one pot for trace samples) platform for small cell population proteomics analysis. NanoPOTS enhances the efficiency and recovery of sample processing by downscaling processing volumes to <200 nL to minimize surface losses. When combined with ultrasensitive liquid chromatography-MS, nanoPOTS allows identification of ~1500 to ~3000 proteins from ~10 to ~140 cells, respectively. By incorporating the Match Between Runs algorithm of MaxQuant, >3000 proteins are consistently identified from as few as 10 cells. Furthermore, we demonstrate quantification of ~2400 proteins from single human pancreatic islet thin sections from type 1 diabetic and control donors, illustrating the application of nanoPOTS for spatially resolved proteome measurements from clinical tissues.