Cargando…

Bioprocessing strategies for cost-effective large-scale biogenic synthesis of nano-MgO from endophytic Streptomyces coelicolor strain E72 as an anti-multidrug-resistant pathogens agent

In this report, the local nano-MgO synthesizer strain has been isolated from Ocimum sanctum plant and deposited in GenBank as endophytic Streptomyces coelicolor strain E72. Its intracellular metabolic fraction that contains 7.2 μg/μl of carbohydrate, 6.3 g/l of protein and 5.2 nmol/hr/ml of nitrate...

Descripción completa

Detalles Bibliográficos
Autor principal: EL-Moslamy, Shahira H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5830579/
https://www.ncbi.nlm.nih.gov/pubmed/29491452
http://dx.doi.org/10.1038/s41598-018-22134-x
_version_ 1783303020701810688
author EL-Moslamy, Shahira H.
author_facet EL-Moslamy, Shahira H.
author_sort EL-Moslamy, Shahira H.
collection PubMed
description In this report, the local nano-MgO synthesizer strain has been isolated from Ocimum sanctum plant and deposited in GenBank as endophytic Streptomyces coelicolor strain E72. Its intracellular metabolic fraction that contains 7.2 μg/μl of carbohydrate, 6.3 g/l of protein and 5.2 nmol/hr/ml of nitrate reductase used to produce multi-surface shaped nano-MgO with diameter ~25 nm. To the best of our knowledge, this is the first report using statistical nanobiotechnological strategies (Plackett -Burman, Box-Behnken and Taguchi experimental designs) to study and evaluate the endophytic S. coelicolor biomass production (123.3 g/l) and extract the highest bioactive metabolites that used for biogenic synthesis of nano-MgO (320 g/l) through exponential sucrose pulses feeding fermentation strategy after 192 hr in semi industrial scale bioreactor (7 L). Purified nano-MgO applied in vitro against multi-drug resistant human pathogens and the large inhibition zone recorded against Shigella flexneri (108 ± 10.53 mm). The average of MICs was recorded as 25 µg/ml that inhibited 90% of the pathogenic living cells and compared with 100 mg/ml ampicilin/sulbactam solution that killed 40% of the same pathogen. These results are expected to gather sufficient knowledge to discover and develop a new cheap and eco-friendly nano-MgO as an extremely strong antimicrobial agent used in biomedical applications.
format Online
Article
Text
id pubmed-5830579
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-58305792018-03-05 Bioprocessing strategies for cost-effective large-scale biogenic synthesis of nano-MgO from endophytic Streptomyces coelicolor strain E72 as an anti-multidrug-resistant pathogens agent EL-Moslamy, Shahira H. Sci Rep Article In this report, the local nano-MgO synthesizer strain has been isolated from Ocimum sanctum plant and deposited in GenBank as endophytic Streptomyces coelicolor strain E72. Its intracellular metabolic fraction that contains 7.2 μg/μl of carbohydrate, 6.3 g/l of protein and 5.2 nmol/hr/ml of nitrate reductase used to produce multi-surface shaped nano-MgO with diameter ~25 nm. To the best of our knowledge, this is the first report using statistical nanobiotechnological strategies (Plackett -Burman, Box-Behnken and Taguchi experimental designs) to study and evaluate the endophytic S. coelicolor biomass production (123.3 g/l) and extract the highest bioactive metabolites that used for biogenic synthesis of nano-MgO (320 g/l) through exponential sucrose pulses feeding fermentation strategy after 192 hr in semi industrial scale bioreactor (7 L). Purified nano-MgO applied in vitro against multi-drug resistant human pathogens and the large inhibition zone recorded against Shigella flexneri (108 ± 10.53 mm). The average of MICs was recorded as 25 µg/ml that inhibited 90% of the pathogenic living cells and compared with 100 mg/ml ampicilin/sulbactam solution that killed 40% of the same pathogen. These results are expected to gather sufficient knowledge to discover and develop a new cheap and eco-friendly nano-MgO as an extremely strong antimicrobial agent used in biomedical applications. Nature Publishing Group UK 2018-02-28 /pmc/articles/PMC5830579/ /pubmed/29491452 http://dx.doi.org/10.1038/s41598-018-22134-x Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
EL-Moslamy, Shahira H.
Bioprocessing strategies for cost-effective large-scale biogenic synthesis of nano-MgO from endophytic Streptomyces coelicolor strain E72 as an anti-multidrug-resistant pathogens agent
title Bioprocessing strategies for cost-effective large-scale biogenic synthesis of nano-MgO from endophytic Streptomyces coelicolor strain E72 as an anti-multidrug-resistant pathogens agent
title_full Bioprocessing strategies for cost-effective large-scale biogenic synthesis of nano-MgO from endophytic Streptomyces coelicolor strain E72 as an anti-multidrug-resistant pathogens agent
title_fullStr Bioprocessing strategies for cost-effective large-scale biogenic synthesis of nano-MgO from endophytic Streptomyces coelicolor strain E72 as an anti-multidrug-resistant pathogens agent
title_full_unstemmed Bioprocessing strategies for cost-effective large-scale biogenic synthesis of nano-MgO from endophytic Streptomyces coelicolor strain E72 as an anti-multidrug-resistant pathogens agent
title_short Bioprocessing strategies for cost-effective large-scale biogenic synthesis of nano-MgO from endophytic Streptomyces coelicolor strain E72 as an anti-multidrug-resistant pathogens agent
title_sort bioprocessing strategies for cost-effective large-scale biogenic synthesis of nano-mgo from endophytic streptomyces coelicolor strain e72 as an anti-multidrug-resistant pathogens agent
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5830579/
https://www.ncbi.nlm.nih.gov/pubmed/29491452
http://dx.doi.org/10.1038/s41598-018-22134-x
work_keys_str_mv AT elmoslamyshahirah bioprocessingstrategiesforcosteffectivelargescalebiogenicsynthesisofnanomgofromendophyticstreptomycescoelicolorstraine72asanantimultidrugresistantpathogensagent