Cargando…
A method for estimating Hill function-based dynamic models of gene regulatory networks
Gene regulatory networks (GRNs) are quite large and complex. To better understand and analyse GRNs, mathematical models are being employed. Different types of models, such as logical, continuous and stochastic models, can be used to describe GRNs. In this paper, we present a new approach to identify...
Autores principales: | Ehsan Elahi, Faizan, Hasan, Ammar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5830732/ https://www.ncbi.nlm.nih.gov/pubmed/29515843 http://dx.doi.org/10.1098/rsos.171226 |
Ejemplares similares
-
Gene Regulatory Network Inference: Connecting Plant Biology and Mathematical Modeling
por: Van den Broeck, Lisa, et al.
Publicado: (2020) -
Validation of gene regulatory network inference based on controllability
por: Qian, Xiaoning, et al.
Publicado: (2013) -
B-cell lymphoma gene regulatory networks: biological consistency among inference methods
por: de Matos Simoes, Ricardo, et al.
Publicado: (2013) -
The gene regulatory network for breast cancer: integrated regulatory landscape of cancer hallmarks
por: Emmert-Streib, Frank, et al.
Publicado: (2014) -
Gene Regulatory Networks Reconstruction Using the Flooding-Pruning Hill-Climbing Algorithm
por: Xing, Linlin, et al.
Publicado: (2018)