Cargando…
Evaluation of sampling frequency, window size and sensor position for classification of sheep behaviour
Automated behavioural classification and identification through sensors has the potential to improve health and welfare of the animals. Position of a sensor, sampling frequency and window size of segmented signal data has a major impact on classification accuracy in activity recognition and energy n...
Autores principales: | Walton, Emily, Casey, Christy, Mitsch, Jurgen, Vázquez-Diosdado, Jorge A., Yan, Juan, Dottorini, Tania, Ellis, Keith A., Winterlich, Anthony, Kaler, Jasmeet |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5830751/ https://www.ncbi.nlm.nih.gov/pubmed/29515862 http://dx.doi.org/10.1098/rsos.171442 |
Ejemplares similares
-
Automated detection of lameness in sheep using machine learning approaches: novel insights into behavioural differences among lame and non-lame sheep
por: Kaler, Jasmeet, et al.
Publicado: (2020) -
Feature Selection and Comparison of Machine Learning Algorithms in Classification of Grazing and Rumination Behaviour in Sheep
por: Mansbridge, Nicola, et al.
Publicado: (2018) -
A Combined Offline and Online Algorithm for Real-Time and Long-Term Classification of Sheep Behaviour: Novel Approach for Precision Livestock Farming
por: Vázquez-Diosdado, Jorge A., et al.
Publicado: (2019) -
Machine Learning Algorithms to Classify and Quantify Multiple Behaviours in Dairy Calves Using a Sensor: Moving beyond Classification in Precision Livestock
por: Carslake, Charles, et al.
Publicado: (2020) -
Personality and predictability in farmed calves using movement and space-use behaviours quantified by ultra-wideband sensors
por: Occhiuto, Francesca, et al.
Publicado: (2022)