Cargando…
Comparison of Non-human Primate versus Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Treatment of Myocardial Infarction
Non-human primates (NHPs) can serve as a human-like model to study cell therapy using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). However, whether the efficacy of NHP and human iPSC-CMs is mechanistically similar remains unknown. To examine this, RNU rats received intramyocardia...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5830958/ https://www.ncbi.nlm.nih.gov/pubmed/29398480 http://dx.doi.org/10.1016/j.stemcr.2018.01.002 |
Sumario: | Non-human primates (NHPs) can serve as a human-like model to study cell therapy using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). However, whether the efficacy of NHP and human iPSC-CMs is mechanistically similar remains unknown. To examine this, RNU rats received intramyocardial injection of 1 × 10(7) NHP or human iPSC-CMs or the same number of respective fibroblasts or PBS control (n = 9–14/group) at 4 days after 60-min coronary artery occlusion-reperfusion. Cardiac function and left ventricular remodeling were similarly improved in both iPSC-CM-treated groups. To mimic the ischemic environment in the infarcted heart, both cultured NHP and human iPSC-CMs underwent 24-hr hypoxia in vitro. Both cells and media were collected, and similarities in transcriptomic as well as metabolomic profiles were noted between both groups. In conclusion, both NHP and human iPSC-CMs confer similar cardioprotection in a rodent myocardial infarction model through relatively similar mechanisms via promotion of cell survival, angiogenesis, and inhibition of hypertrophy and fibrosis. |
---|