Cargando…
Silhouette Scores for Arbitrary Defined Groups in Gene Expression Data and Insights into Differential Expression Results
BACKGROUND: Hierarchical Sample clustering (HSC) is widely performed to examine associations within expression data obtained from microarrays and RNA sequencing (RNA-seq). Researchers have investigated the HSC results with several possible criteria for grouping (e.g., sex, age, and disease types). H...
Autores principales: | Zhao, Shitao, Sun, Jianqiang, Shimizu, Kentaro, Kadota, Koji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5831220/ https://www.ncbi.nlm.nih.gov/pubmed/29507534 http://dx.doi.org/10.1186/s12575-018-0067-8 |
Ejemplares similares
-
Evaluation of methods for differential expression analysis on multi-group RNA-seq count data
por: Tang, Min, et al.
Publicado: (2015) -
TCC-GUI: a Shiny-based application for differential expression analysis of RNA-Seq count data
por: Su, Wei, et al.
Publicado: (2019) -
Accurate Classification of Differential Expression Patterns in a
Bayesian Framework With Robust Normalization for Multi-Group RNA-Seq Count
Data
por: Osabe, Takayuki, et al.
Publicado: (2019) -
Ranking differentially expressed genes from Affymetrix gene expression data: methods with reproducibility, sensitivity, and specificity
por: Kadota, Koji, et al.
Publicado: (2009) -
Evaluating methods for ranking differentially expressed genes applied to microArray quality control data
por: Kadota, Koji, et al.
Publicado: (2011)