Cargando…
Prediction of GPCR-Ligand Binding Using Machine Learning Algorithms
We propose a novel method that predicts binding of G-protein coupled receptors (GPCRs) and ligands. The proposed method uses hub and cycle structures of ligands and amino acid motif sequences of GPCRs, rather than the 3D structure of a receptor or similarity of receptors or ligands. The experimental...
Autores principales: | Seo, Sangmin, Choi, Jonghwan, Ahn, Soon Kil, Kim, Kil Won, Kim, Jaekwang, Choi, Jaehyuck, Kim, Jinho, Ahn, Jaegyoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5831789/ https://www.ncbi.nlm.nih.gov/pubmed/29666662 http://dx.doi.org/10.1155/2018/6565241 |
Ejemplares similares
-
Binding affinity prediction for protein–ligand complex using deep attention mechanism based on intermolecular interactions
por: Seo, Sangmin, et al.
Publicado: (2021) -
G2Vec: Distributed gene representations for identification of cancer prognostic genes
por: Choi, Jonghwan, et al.
Publicado: (2018) -
GVES: machine learning model for identification of prognostic genes with a small dataset
por: Ko, Soohyun, et al.
Publicado: (2021) -
RefDNN: a reference drug based neural network for more accurate prediction of anticancer drug resistance
por: Choi, Jonghwan, et al.
Publicado: (2020) -
GPCR_LigandClassify.py; a rigorous machine learning classifier for GPCR targeting compounds
por: Ahmed, Marawan, et al.
Publicado: (2021)