Cargando…
Dynamical Motor Control Learned with Deep Deterministic Policy Gradient
Conventional models of motor control exploit the spatial representation of the controlled system to generate control commands. Typically, the control command is gained with the feedback state of a specific instant in time, which behaves like an optimal regulator or spatial filter to the feedback sta...
Autores principales: | Shi, Haibo, Sun, Yaoru, Li, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5831918/ https://www.ncbi.nlm.nih.gov/pubmed/29666634 http://dx.doi.org/10.1155/2018/8535429 |
Ejemplares similares
-
Implementation of Deep Deterministic Policy Gradients for Controlling Dynamic Bipedal Walking
por: Liu, Chujun, et al.
Publicado: (2019) -
Network Architecture for Optimizing Deep Deterministic Policy Gradient Algorithms
por: Zhang, Haifei, et al.
Publicado: (2022) -
An enhanced deep deterministic policy gradient algorithm for intelligent control of robotic arms
por: Dong, Ruyi, et al.
Publicado: (2023) -
Noise-Adaption Extended Kalman Filter Based on Deep Deterministic Policy Gradient for Maneuvering Targets
por: Li, Jiali, et al.
Publicado: (2022) -
Efficient Path Planning for Mobile Robot Based on Deep Deterministic Policy Gradient
por: Gong, Hui, et al.
Publicado: (2022)