Cargando…
Feature Genes Selection Using Supervised Locally Linear Embedding and Correlation Coefficient for Microarray Classification
The selection of feature genes with high recognition ability from the gene expression profiles has gained great significance in biology. However, most of the existing methods have a high time complexity and poor classification performance. Motivated by this, an effective feature selection method, ca...
Autores principales: | Xu, Jiucheng, Mu, Huiyu, Wang, Yun, Huang, Fangzhou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5831962/ https://www.ncbi.nlm.nih.gov/pubmed/29666661 http://dx.doi.org/10.1155/2018/5490513 |
Ejemplares similares
-
Supervised PolSAR Image Classification with Multiple Features and Locally Linear Embedding
por: Zhang, Qiang, et al.
Publicado: (2018) -
Locally Linear Embedding and fMRI Feature Selection in Psychiatric Classification
Publicado: (2019) -
Efficient feature selection and classification for microarray data
por: Li, Zifa, et al.
Publicado: (2018) -
Feature Selection for Interpatient Supervised Heart Beat Classification
por: Doquire, G., et al.
Publicado: (2011) -
Stable feature selection and classification algorithms for multiclass microarray data
por: Student, Sebastian, et al.
Publicado: (2012)