Cargando…
Using machine-learning to optimize phase contrast in a low-cost cellphone microscope
Cellphones equipped with high-quality cameras and powerful CPUs as well as GPUs are widespread. This opens new prospects to use such existing computational and imaging resources to perform medical diagnosis in developing countries at a very low cost. Many relevant samples, like biological cells or w...
Autores principales: | Diederich, Benedict, Wartmann, Rolf, Schadwinkel, Harald, Heintzmann, Rainer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832211/ https://www.ncbi.nlm.nih.gov/pubmed/29494620 http://dx.doi.org/10.1371/journal.pone.0192937 |
Ejemplares similares
-
One-shot phase-recovery using a cellphone RGB camera on a Jamin-Lebedeff microscope
por: Diederich, Benedict, et al.
Publicado: (2019) -
cellSTORM—Cost-effective super-resolution on a cellphone using dSTORM
por: Diederich, Benedict, et al.
Publicado: (2019) -
A versatile and customizable low-cost 3D-printed open standard for microscopic imaging
por: Diederich, Benedict, et al.
Publicado: (2020) -
Imaging & identification of malaria parasites using cellphone microscope with a ball lens
por: Agbana, Temitope E., et al.
Publicado: (2018) -
Super-resolution microscopy: a brief history and new avenues
por: Prakash, Kirti, et al.
Publicado: (2022)