Cargando…

The effect of increasing the sulfation level of chondroitin sulfate on anticoagulant specific activity and activation of the kinin system

Oversulfated chondroitin sulfate (OSCS) was identified as a contaminant in certain heparin preparations as the cause of adverse reactions in patients. OSCS was found to possess both plasma anticoagulant activity and the ability to activate prekallikrein to kallikrein. Differentially sulfated chondro...

Descripción completa

Detalles Bibliográficos
Autores principales: Hogwood, J., Naggi, A., Torri, G., Page, C., Rigsby, P., Mulloy, B., Gray, E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832253/
https://www.ncbi.nlm.nih.gov/pubmed/29494632
http://dx.doi.org/10.1371/journal.pone.0193482
Descripción
Sumario:Oversulfated chondroitin sulfate (OSCS) was identified as a contaminant in certain heparin preparations as the cause of adverse reactions in patients. OSCS was found to possess both plasma anticoagulant activity and the ability to activate prekallikrein to kallikrein. Differentially sulfated chondroitin sulfates were prepared by synthetic modification of chondroitin sulfate and were compared to the activity of OSCS purified from contaminated heparin. Whilst chondroitin sulfate was found to have minimal anticoagulant activity, increasing sulfation levels produced an anticoagulant response which we directly show for the first time is mediated through heparin cofactor II. However, the tetra-sulfated preparations did not possess any higher anticoagulant activity than several tri-sulfated variants, and also had lower heparin cofactor II mediated activity. Activation of prekallikrein was concentration dependent for all samples, and broadly increased with the degree of sulfation, though the di-sulfated preparation was able to form more kallikrein than some of the tri-sulfated preparations. The ability of the samples to activate the kinin system, as measured by bradykinin, was observed to be through kallikrein generation. These results show that whilst an increase in sulfation of chondroitin sulfate did cause an increase in anticoagulant activity and activation of the kinin system, there may be subtler structural interactions other than sulfation at play given the different responses observed.