Cargando…

A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila

Insects determine their body segments in two different ways. Short-germband insects, such as the flour beetle Tribolium castaneum, use a molecular clock to establish segments sequentially. In contrast, long-germband insects, such as the vinegar fly Drosophila melanogaster, determine all segments sim...

Descripción completa

Detalles Bibliográficos
Autores principales: Verd, Berta, Clark, Erik, Wotton, Karl R., Janssens, Hilde, Jiménez-Guri, Eva, Crombach, Anton, Jaeger, Johannes
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832388/
https://www.ncbi.nlm.nih.gov/pubmed/29451884
http://dx.doi.org/10.1371/journal.pbio.2003174
_version_ 1783303311874588672
author Verd, Berta
Clark, Erik
Wotton, Karl R.
Janssens, Hilde
Jiménez-Guri, Eva
Crombach, Anton
Jaeger, Johannes
author_facet Verd, Berta
Clark, Erik
Wotton, Karl R.
Janssens, Hilde
Jiménez-Guri, Eva
Crombach, Anton
Jaeger, Johannes
author_sort Verd, Berta
collection PubMed
description Insects determine their body segments in two different ways. Short-germband insects, such as the flour beetle Tribolium castaneum, use a molecular clock to establish segments sequentially. In contrast, long-germband insects, such as the vinegar fly Drosophila melanogaster, determine all segments simultaneously through a hierarchical cascade of gene regulation. Gap genes constitute the first layer of the Drosophila segmentation gene hierarchy, downstream of maternal gradients such as that of Caudal (Cad). We use data-driven mathematical modelling and phase space analysis to show that shifting gap domains in the posterior half of the Drosophila embryo are an emergent property of a robust damped oscillator mechanism, suggesting that the regulatory dynamics underlying long- and short-germband segmentation are much more similar than previously thought. In Tribolium, Cad has been proposed to modulate the frequency of the segmentation oscillator. Surprisingly, our simulations and experiments show that the shift rate of posterior gap domains is independent of maternal Cad levels in Drosophila. Our results suggest a novel evolutionary scenario for the short- to long-germband transition and help explain why this transition occurred convergently multiple times during the radiation of the holometabolan insects.
format Online
Article
Text
id pubmed-5832388
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-58323882018-03-23 A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila Verd, Berta Clark, Erik Wotton, Karl R. Janssens, Hilde Jiménez-Guri, Eva Crombach, Anton Jaeger, Johannes PLoS Biol Research Article Insects determine their body segments in two different ways. Short-germband insects, such as the flour beetle Tribolium castaneum, use a molecular clock to establish segments sequentially. In contrast, long-germband insects, such as the vinegar fly Drosophila melanogaster, determine all segments simultaneously through a hierarchical cascade of gene regulation. Gap genes constitute the first layer of the Drosophila segmentation gene hierarchy, downstream of maternal gradients such as that of Caudal (Cad). We use data-driven mathematical modelling and phase space analysis to show that shifting gap domains in the posterior half of the Drosophila embryo are an emergent property of a robust damped oscillator mechanism, suggesting that the regulatory dynamics underlying long- and short-germband segmentation are much more similar than previously thought. In Tribolium, Cad has been proposed to modulate the frequency of the segmentation oscillator. Surprisingly, our simulations and experiments show that the shift rate of posterior gap domains is independent of maternal Cad levels in Drosophila. Our results suggest a novel evolutionary scenario for the short- to long-germband transition and help explain why this transition occurred convergently multiple times during the radiation of the holometabolan insects. Public Library of Science 2018-02-16 /pmc/articles/PMC5832388/ /pubmed/29451884 http://dx.doi.org/10.1371/journal.pbio.2003174 Text en © 2018 Verd et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Verd, Berta
Clark, Erik
Wotton, Karl R.
Janssens, Hilde
Jiménez-Guri, Eva
Crombach, Anton
Jaeger, Johannes
A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila
title A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila
title_full A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila
title_fullStr A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila
title_full_unstemmed A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila
title_short A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila
title_sort damped oscillator imposes temporal order on posterior gap gene expression in drosophila
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832388/
https://www.ncbi.nlm.nih.gov/pubmed/29451884
http://dx.doi.org/10.1371/journal.pbio.2003174
work_keys_str_mv AT verdberta adampedoscillatorimposestemporalorderonposteriorgapgeneexpressionindrosophila
AT clarkerik adampedoscillatorimposestemporalorderonposteriorgapgeneexpressionindrosophila
AT wottonkarlr adampedoscillatorimposestemporalorderonposteriorgapgeneexpressionindrosophila
AT janssenshilde adampedoscillatorimposestemporalorderonposteriorgapgeneexpressionindrosophila
AT jimenezgurieva adampedoscillatorimposestemporalorderonposteriorgapgeneexpressionindrosophila
AT crombachanton adampedoscillatorimposestemporalorderonposteriorgapgeneexpressionindrosophila
AT jaegerjohannes adampedoscillatorimposestemporalorderonposteriorgapgeneexpressionindrosophila
AT verdberta dampedoscillatorimposestemporalorderonposteriorgapgeneexpressionindrosophila
AT clarkerik dampedoscillatorimposestemporalorderonposteriorgapgeneexpressionindrosophila
AT wottonkarlr dampedoscillatorimposestemporalorderonposteriorgapgeneexpressionindrosophila
AT janssenshilde dampedoscillatorimposestemporalorderonposteriorgapgeneexpressionindrosophila
AT jimenezgurieva dampedoscillatorimposestemporalorderonposteriorgapgeneexpressionindrosophila
AT crombachanton dampedoscillatorimposestemporalorderonposteriorgapgeneexpressionindrosophila
AT jaegerjohannes dampedoscillatorimposestemporalorderonposteriorgapgeneexpressionindrosophila