Cargando…
Hidden Markov models for monitoring circadian rhythmicity in telemetric activity data
Wearable computing devices allow collection of densely sampled real-time information on movement enabling researchers and medical experts to obtain objective and non-obtrusive records of actual activity of a subject in the real world over many days. Our interest here is motivated by the use of activ...
Autores principales: | Huang, Qi, Cohen, Dwayne, Komarzynski, Sandra, Li, Xiao-Mei, Innominato, Pasquale, Lévi, Francis, Finkenstädt, Bärbel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832732/ https://www.ncbi.nlm.nih.gov/pubmed/29436510 http://dx.doi.org/10.1098/rsif.2017.0885 |
Ejemplares similares
-
Predictability of individual circadian phase during daily routine for medical applications of circadian clocks
por: Komarzynski, Sandra, et al.
Publicado: (2019) -
A reaction network scheme for hidden Markov model parameter learning
por: Wiuf, Carsten, et al.
Publicado: (2023) -
Tele-Monitoring of Cancer Patients’ Rhythms during Daily Life Identifies Actionable Determinants of Circadian and Sleep Disruption
por: Lévi, Francis, et al.
Publicado: (2020) -
Telemonitored Human Circadian Temperature Dynamics During Daily Routine
por: Huang, Qi, et al.
Publicado: (2021) -
Relevance of a Mobile Internet Platform for Capturing Inter- and Intrasubject Variabilities in Circadian Coordination During Daily Routine: Pilot Study
por: Komarzynski, Sandra, et al.
Publicado: (2018)