Cargando…
Spatial summation across the visual field in strabismic and anisometropic amblyopia
Ricco’s area (the largest area of visual space in which stimulus area and intensity are inversely proportional at threshold) has previously been hypothesised to be a result of centre/surround antagonism in retinal ganglion cell receptive fields, but recent evidence suggests a sizeable cortical contr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832776/ https://www.ncbi.nlm.nih.gov/pubmed/29497120 http://dx.doi.org/10.1038/s41598-018-21620-6 |
Sumario: | Ricco’s area (the largest area of visual space in which stimulus area and intensity are inversely proportional at threshold) has previously been hypothesised to be a result of centre/surround antagonism in retinal ganglion cell receptive fields, but recent evidence suggests a sizeable cortical contribution. Here, Ricco’s area was measured in amblyopia, a condition in which retinal receptive fields are normal, to better understand its physiological basis. Spatial summation functions were determined at 12 visual field locations in both eyes of 14 amblyopic adults and 15 normal-sighted controls. Ricco’s area was significantly larger in amblyopic eyes than in fellow non-amblyopic eyes. Compared to the size of Ricco’s area in control eyes, Ricco’s area measured significantly larger in amblyopic eyes. Additionally, Ricco’s area in the fellow, non-amblyopic eye of amblyopic participants measured significantly smaller than in control eyes. Compared to controls, Ricco’s area was larger in amblyopic eyes and smaller in fellow non-amblyopic eyes. Amblyopia type, binocularity, and inter-ocular difference in visual acuity were significantly associated with inter-ocular differences in Ricco’s area in amblyopes. The physiological basis for Ricco’s area is unlikely to be confined to the retina, but more likely representative of spatial summation at multiple sites along the visual pathway. |
---|