Cargando…
Frontal cortex function as derived from hierarchical predictive coding
The frontal lobes are essential for human volition and goal-directed behavior, yet their function remains unclear. While various models have highlighted working memory, reinforcement learning, and cognitive control as key functions, a single framework for interpreting the range of effects observed i...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832795/ https://www.ncbi.nlm.nih.gov/pubmed/29497060 http://dx.doi.org/10.1038/s41598-018-21407-9 |
Sumario: | The frontal lobes are essential for human volition and goal-directed behavior, yet their function remains unclear. While various models have highlighted working memory, reinforcement learning, and cognitive control as key functions, a single framework for interpreting the range of effects observed in prefrontal cortex has yet to emerge. Here we show that a simple computational motif based on predictive coding can be stacked hierarchically to learn and perform arbitrarily complex goal-directed behavior. The resulting Hierarchical Error Representation (HER) model simulates a wide array of findings from fMRI, ERP, single-units, and neuropsychological studies of both lateral and medial prefrontal cortex. By reconceptualizing lateral prefrontal activity as anticipating prediction errors, the HER model provides a novel unifying account of prefrontal cortex function with broad implications for understanding the frontal cortex across multiple levels of description, from the level of single neurons to behavior. |
---|