Cargando…
Hypoxia-inducible lipid droplet-associated protein inhibits adipose triglyceride lipase
Elaborate control mechanisms of intracellular triacylglycerol (TAG) breakdown are critically involved in the maintenance of energy homeostasis. Hypoxia-inducible lipid droplet-associated protein (HILPDA)/hypoxia-inducible gene-2 (Hig-2) has been shown to affect intracellular TAG levels, yet, the und...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Biochemistry and Molecular Biology
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832925/ https://www.ncbi.nlm.nih.gov/pubmed/29326160 http://dx.doi.org/10.1194/jlr.M082388 |
_version_ | 1783303389759668224 |
---|---|
author | Padmanabha Das, Krishna M. Wechselberger, Lisa Liziczai, Márton De la Rosa Rodriguez, Montserrat Grabner, Gernot F. Heier, Christoph Viertlmayr, Roland Radler, Claudia Lichtenegger, Jörg Zimmermann, Robert Borst, Jan Willem Zechner, Rudolf Kersten, Sander Oberer, Monika |
author_facet | Padmanabha Das, Krishna M. Wechselberger, Lisa Liziczai, Márton De la Rosa Rodriguez, Montserrat Grabner, Gernot F. Heier, Christoph Viertlmayr, Roland Radler, Claudia Lichtenegger, Jörg Zimmermann, Robert Borst, Jan Willem Zechner, Rudolf Kersten, Sander Oberer, Monika |
author_sort | Padmanabha Das, Krishna M. |
collection | PubMed |
description | Elaborate control mechanisms of intracellular triacylglycerol (TAG) breakdown are critically involved in the maintenance of energy homeostasis. Hypoxia-inducible lipid droplet-associated protein (HILPDA)/hypoxia-inducible gene-2 (Hig-2) has been shown to affect intracellular TAG levels, yet, the underlying molecular mechanisms are unclear. Here, we show that HILPDA inhibits adipose triglyceride lipase (ATGL), the enzyme catalyzing the first step of intracellular TAG hydrolysis. HILPDA shares structural similarity with G0/G1 switch gene 2 (G0S2), an established inhibitor of ATGL. HILPDA inhibits ATGL activity in a dose-dependent manner with an IC(50) value of ∼2 μM. ATGL inhibition depends on the direct physical interaction of both proteins and involves the N-terminal hydrophobic region of HILPDA and the N-terminal patatin domain-containing segment of ATGL. Finally, confocal microscopy combined with Förster resonance energy transfer-fluorescence lifetime imaging microscopy analysis indicated that HILPDA and ATGL colocalize and physically interact intracellularly. These findings provide a rational biochemical explanation for the tissue-specific increased TAG accumulation in HILPDA-overexpressing transgenic mouse models. |
format | Online Article Text |
id | pubmed-5832925 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-58329252018-03-05 Hypoxia-inducible lipid droplet-associated protein inhibits adipose triglyceride lipase Padmanabha Das, Krishna M. Wechselberger, Lisa Liziczai, Márton De la Rosa Rodriguez, Montserrat Grabner, Gernot F. Heier, Christoph Viertlmayr, Roland Radler, Claudia Lichtenegger, Jörg Zimmermann, Robert Borst, Jan Willem Zechner, Rudolf Kersten, Sander Oberer, Monika J Lipid Res Research Articles Elaborate control mechanisms of intracellular triacylglycerol (TAG) breakdown are critically involved in the maintenance of energy homeostasis. Hypoxia-inducible lipid droplet-associated protein (HILPDA)/hypoxia-inducible gene-2 (Hig-2) has been shown to affect intracellular TAG levels, yet, the underlying molecular mechanisms are unclear. Here, we show that HILPDA inhibits adipose triglyceride lipase (ATGL), the enzyme catalyzing the first step of intracellular TAG hydrolysis. HILPDA shares structural similarity with G0/G1 switch gene 2 (G0S2), an established inhibitor of ATGL. HILPDA inhibits ATGL activity in a dose-dependent manner with an IC(50) value of ∼2 μM. ATGL inhibition depends on the direct physical interaction of both proteins and involves the N-terminal hydrophobic region of HILPDA and the N-terminal patatin domain-containing segment of ATGL. Finally, confocal microscopy combined with Förster resonance energy transfer-fluorescence lifetime imaging microscopy analysis indicated that HILPDA and ATGL colocalize and physically interact intracellularly. These findings provide a rational biochemical explanation for the tissue-specific increased TAG accumulation in HILPDA-overexpressing transgenic mouse models. The American Society for Biochemistry and Molecular Biology 2018-03 2018-01-11 /pmc/articles/PMC5832925/ /pubmed/29326160 http://dx.doi.org/10.1194/jlr.M082388 Text en Copyright © 2018 by the American Society for Biochemistry and Molecular Biology, Inc. http://creativecommons.org/licenses/by/4.0/ Author’s Choice—Final version free via Creative Commons CC-BY license. |
spellingShingle | Research Articles Padmanabha Das, Krishna M. Wechselberger, Lisa Liziczai, Márton De la Rosa Rodriguez, Montserrat Grabner, Gernot F. Heier, Christoph Viertlmayr, Roland Radler, Claudia Lichtenegger, Jörg Zimmermann, Robert Borst, Jan Willem Zechner, Rudolf Kersten, Sander Oberer, Monika Hypoxia-inducible lipid droplet-associated protein inhibits adipose triglyceride lipase |
title | Hypoxia-inducible lipid droplet-associated protein inhibits adipose triglyceride lipase |
title_full | Hypoxia-inducible lipid droplet-associated protein inhibits adipose triglyceride lipase |
title_fullStr | Hypoxia-inducible lipid droplet-associated protein inhibits adipose triglyceride lipase |
title_full_unstemmed | Hypoxia-inducible lipid droplet-associated protein inhibits adipose triglyceride lipase |
title_short | Hypoxia-inducible lipid droplet-associated protein inhibits adipose triglyceride lipase |
title_sort | hypoxia-inducible lipid droplet-associated protein inhibits adipose triglyceride lipase |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832925/ https://www.ncbi.nlm.nih.gov/pubmed/29326160 http://dx.doi.org/10.1194/jlr.M082388 |
work_keys_str_mv | AT padmanabhadaskrishnam hypoxiainduciblelipiddropletassociatedproteininhibitsadiposetriglyceridelipase AT wechselbergerlisa hypoxiainduciblelipiddropletassociatedproteininhibitsadiposetriglyceridelipase AT liziczaimarton hypoxiainduciblelipiddropletassociatedproteininhibitsadiposetriglyceridelipase AT delarosarodriguezmontserrat hypoxiainduciblelipiddropletassociatedproteininhibitsadiposetriglyceridelipase AT grabnergernotf hypoxiainduciblelipiddropletassociatedproteininhibitsadiposetriglyceridelipase AT heierchristoph hypoxiainduciblelipiddropletassociatedproteininhibitsadiposetriglyceridelipase AT viertlmayrroland hypoxiainduciblelipiddropletassociatedproteininhibitsadiposetriglyceridelipase AT radlerclaudia hypoxiainduciblelipiddropletassociatedproteininhibitsadiposetriglyceridelipase AT lichteneggerjorg hypoxiainduciblelipiddropletassociatedproteininhibitsadiposetriglyceridelipase AT zimmermannrobert hypoxiainduciblelipiddropletassociatedproteininhibitsadiposetriglyceridelipase AT borstjanwillem hypoxiainduciblelipiddropletassociatedproteininhibitsadiposetriglyceridelipase AT zechnerrudolf hypoxiainduciblelipiddropletassociatedproteininhibitsadiposetriglyceridelipase AT kerstensander hypoxiainduciblelipiddropletassociatedproteininhibitsadiposetriglyceridelipase AT oberermonika hypoxiainduciblelipiddropletassociatedproteininhibitsadiposetriglyceridelipase |