Cargando…
Metabolic Fingerprinting on a Plasmonic Gold Chip for Mass Spectrometry Based in Vitro Diagnostics
[Image: see text] Current metabolic analysis is far from ideal to engage clinics and needs rationally designed materials and device. Here we developed a novel plasmonic chip for clinical metabolic fingerprinting. We first constructed a series of chips with gold nanoshells on the surface through cont...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832996/ https://www.ncbi.nlm.nih.gov/pubmed/29532022 http://dx.doi.org/10.1021/acscentsci.7b00546 |
Sumario: | [Image: see text] Current metabolic analysis is far from ideal to engage clinics and needs rationally designed materials and device. Here we developed a novel plasmonic chip for clinical metabolic fingerprinting. We first constructed a series of chips with gold nanoshells on the surface through controlled particle synthesis, dip-coating, and gold sputtering for mass production. We integrated the optimized chip with microarrays for laboratory automation and micro-/nanoscaled experiments, which afforded direct high-performance metabolic fingerprinting by laser desorption/ionization mass spectrometry using 500 nL of various biofluids and exosomes. Further we for the first time demonstrated on-chip in vitro metabolic diagnosis of early stage lung cancer patients using serum and exosomes. This work initiates a new bionanotechnology based platform for advanced metabolic analysis toward large-scale diagnostic use. |
---|