Cargando…
Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules
[Image: see text] We report a method to convert discrete representations of molecules to and from a multidimensional continuous representation. This model allows us to generate new molecules for efficient exploration and optimization through open-ended spaces of chemical compounds. A deep neural net...
Autores principales: | Gómez-Bombarelli, Rafael, Wei, Jennifer N., Duvenaud, David, Hernández-Lobato, José Miguel, Sánchez-Lengeling, Benjamín, Sheberla, Dennis, Aguilera-Iparraguirre, Jorge, Hirzel, Timothy D., Adams, Ryan P., Aspuru-Guzik, Alán |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833007/ https://www.ncbi.nlm.nih.gov/pubmed/29532027 http://dx.doi.org/10.1021/acscentsci.7b00572 |
Ejemplares similares
-
Neural Networks for the Prediction of Organic Chemistry
Reactions
por: Wei, Jennifer N., et al.
Publicado: (2016) -
Learning More, with Less
por: Sánchez-Lengeling, Benjamín, et al.
Publicado: (2017) -
An Alternative Host Material for Long‐Lifespan Blue Organic Light‐Emitting Diodes Using Thermally Activated Delayed Fluorescence
por: Ihn, Soo‐Ghang, et al.
Publicado: (2017) -
Quantum Chemical Approach to Estimating the Thermodynamics of Metabolic Reactions
por: Jinich, Adrian, et al.
Publicado: (2014) -
A thermodynamic atlas of carbon redox chemical space
por: Jinich, Adrian, et al.
Publicado: (2020)