Cargando…
N6-methyladenosine links RNA metabolism to cancer progression
N6-methyladenosine (m6A) is the most abundant mRNA modification. With the development of antibody-based sequencing technologies and the findings of m6A-related “writers”, “erasers”, and “readers”, the relationships between m6A and mRNA metabolism are emerging. The m6A modification influences almost...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833385/ https://www.ncbi.nlm.nih.gov/pubmed/29374143 http://dx.doi.org/10.1038/s41419-017-0129-x |
Sumario: | N6-methyladenosine (m6A) is the most abundant mRNA modification. With the development of antibody-based sequencing technologies and the findings of m6A-related “writers”, “erasers”, and “readers”, the relationships between m6A and mRNA metabolism are emerging. The m6A modification influences almost every step of RNA metabolism that comprises mRNA processing, mRNA exporting from nucleus to cytoplasm, mRNA translation, mRNA decay, and the biogenesis of long-non-coding RNA (lncRNA) and microRNA (miRNA). Recently, more and more studies have found m6A is associated with cancer, contributing to the self-renewal of cancer stem cell, promotion of cancer cell proliferation, and resistance to radiotherapy or chemotherapy. Inhibitors of m6A-related factors have been explored, and some of them were identified to inhibit cancer progression, indicating that m6A could be a target for cancer therapy. In this review, we are trying to summarize the regulation and function of m6A in human carcinogenesis. |
---|