Cargando…
Efficient iterative virtual screening with Apache Spark and conformal prediction
BACKGROUND: Docking and scoring large libraries of ligands against target proteins forms the basis of structure-based virtual screening. The problem is trivially parallelizable, and calculations are generally carried out on computer clusters or on large workstations in a brute force manner, by docki...
Autores principales: | Ahmed, Laeeq, Georgiev, Valentin, Capuccini, Marco, Toor, Salman, Schaal, Wesley, Laure, Erwin, Spjuth, Ola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833896/ https://www.ncbi.nlm.nih.gov/pubmed/29492726 http://dx.doi.org/10.1186/s13321-018-0265-z |
Ejemplares similares
-
Large-scale virtual screening on public cloud resources with Apache Spark
por: Capuccini, Marco, et al.
Publicado: (2017) -
MaRe: Processing Big Data with application containers on Apache Spark
por: Capuccini, Marco, et al.
Publicado: (2020) -
Predicting target profiles with confidence as a service using docking scores
por: Ahmed, Laeeq, et al.
Publicado: (2020) -
On-demand virtual research environments using microservices
por: Capuccini, Marco, et al.
Publicado: (2019) -
Apache Spark quick start guide: quickly learn the art of writing efficient big data applications with Apache Spark
por: Mehrotra, Shrey, et al.
Publicado: (2019)