Cargando…
Asymmetricity Between Sister Cells of Pluripotent Stem Cells at the Onset of Differentiation
Various somatic stem cells divide asymmetrically; however, it is not known whether embryonic stem cells (ESCs) divide symmetrically or asymmetrically, not only while maintaining an undifferentiated state but also at the onset of differentiation. In this study, we observed single ESCs using time-laps...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833898/ https://www.ncbi.nlm.nih.gov/pubmed/29336219 http://dx.doi.org/10.1089/scd.2017.0113 |
_version_ | 1783303562066919424 |
---|---|
author | Nakamura, Shogo Maruyama, Atsushi Kondo, Yuki Kano, Ayumu De Sousa, Olga M. Iwahashi, Masahiro Hexig, Bayar Akaike, Toshihiro Li, Jingyue Hayashi, Yohei Ohnuma, Kiyoshi |
author_facet | Nakamura, Shogo Maruyama, Atsushi Kondo, Yuki Kano, Ayumu De Sousa, Olga M. Iwahashi, Masahiro Hexig, Bayar Akaike, Toshihiro Li, Jingyue Hayashi, Yohei Ohnuma, Kiyoshi |
author_sort | Nakamura, Shogo |
collection | PubMed |
description | Various somatic stem cells divide asymmetrically; however, it is not known whether embryonic stem cells (ESCs) divide symmetrically or asymmetrically, not only while maintaining an undifferentiated state but also at the onset of differentiation. In this study, we observed single ESCs using time-lapse imaging and compared sister cell pairs derived from the same mother cell in either the maintenance or differentiation medium. Mouse ESCs were cultured on E-cadherin-coated glass-based dishes, which allowed us to trace single cells. The undifferentiated cell state was detected by green fluorescent protein (GFP) expression driven by the Nanog promoter, which is active only in undifferentiated cells. Cell population analysis using flow cytometry showed that the peak width indicating distribution of GFP expression broadened when cells were transferred to the differentiation medium compared to when they were in the maintenance medium. This finding suggested that the population of ESCs became more heterogeneous at the onset of differentiation. Using single-cell analysis by time-lapse imaging, we found that although the total survival ratio decreased by changing to differentiation medium, the one-live-one-dead ratio of sister cell pairs was smaller compared with randomly chosen non-sister cell pairs, defined as an unsynchronized cell pair control, in both media. This result suggested that sister cell pairs were more positively synchronized with each other compared to non-sister cell pairs. The differences in interdivision time (the time interval between mother cell division and the subsequent cell division) between sister cells was smaller than that between non-sister cell pairs in both media, suggesting that sister cells divided synchronously. Although the difference in Nanog-GFP intensity between sister cells was smaller than that between non-sister cells in the maintenance medium, it was the same in differentiation medium, suggesting asymmetrical Nanog-GFP intensity. These data suggested that ESCs may divide asymmetrically at the onset of differentiation resulting in heterogeneity. |
format | Online Article Text |
id | pubmed-5833898 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Mary Ann Liebert, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-58338982018-04-11 Asymmetricity Between Sister Cells of Pluripotent Stem Cells at the Onset of Differentiation Nakamura, Shogo Maruyama, Atsushi Kondo, Yuki Kano, Ayumu De Sousa, Olga M. Iwahashi, Masahiro Hexig, Bayar Akaike, Toshihiro Li, Jingyue Hayashi, Yohei Ohnuma, Kiyoshi Stem Cells Dev Original Research Reports Various somatic stem cells divide asymmetrically; however, it is not known whether embryonic stem cells (ESCs) divide symmetrically or asymmetrically, not only while maintaining an undifferentiated state but also at the onset of differentiation. In this study, we observed single ESCs using time-lapse imaging and compared sister cell pairs derived from the same mother cell in either the maintenance or differentiation medium. Mouse ESCs were cultured on E-cadherin-coated glass-based dishes, which allowed us to trace single cells. The undifferentiated cell state was detected by green fluorescent protein (GFP) expression driven by the Nanog promoter, which is active only in undifferentiated cells. Cell population analysis using flow cytometry showed that the peak width indicating distribution of GFP expression broadened when cells were transferred to the differentiation medium compared to when they were in the maintenance medium. This finding suggested that the population of ESCs became more heterogeneous at the onset of differentiation. Using single-cell analysis by time-lapse imaging, we found that although the total survival ratio decreased by changing to differentiation medium, the one-live-one-dead ratio of sister cell pairs was smaller compared with randomly chosen non-sister cell pairs, defined as an unsynchronized cell pair control, in both media. This result suggested that sister cell pairs were more positively synchronized with each other compared to non-sister cell pairs. The differences in interdivision time (the time interval between mother cell division and the subsequent cell division) between sister cells was smaller than that between non-sister cell pairs in both media, suggesting that sister cells divided synchronously. Although the difference in Nanog-GFP intensity between sister cells was smaller than that between non-sister cells in the maintenance medium, it was the same in differentiation medium, suggesting asymmetrical Nanog-GFP intensity. These data suggested that ESCs may divide asymmetrically at the onset of differentiation resulting in heterogeneity. Mary Ann Liebert, Inc. 2018-03-01 2018-03-01 /pmc/articles/PMC5833898/ /pubmed/29336219 http://dx.doi.org/10.1089/scd.2017.0113 Text en © Shogo Nakamura et al. 2018; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Reports Nakamura, Shogo Maruyama, Atsushi Kondo, Yuki Kano, Ayumu De Sousa, Olga M. Iwahashi, Masahiro Hexig, Bayar Akaike, Toshihiro Li, Jingyue Hayashi, Yohei Ohnuma, Kiyoshi Asymmetricity Between Sister Cells of Pluripotent Stem Cells at the Onset of Differentiation |
title | Asymmetricity Between Sister Cells of Pluripotent Stem Cells at the Onset of Differentiation |
title_full | Asymmetricity Between Sister Cells of Pluripotent Stem Cells at the Onset of Differentiation |
title_fullStr | Asymmetricity Between Sister Cells of Pluripotent Stem Cells at the Onset of Differentiation |
title_full_unstemmed | Asymmetricity Between Sister Cells of Pluripotent Stem Cells at the Onset of Differentiation |
title_short | Asymmetricity Between Sister Cells of Pluripotent Stem Cells at the Onset of Differentiation |
title_sort | asymmetricity between sister cells of pluripotent stem cells at the onset of differentiation |
topic | Original Research Reports |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833898/ https://www.ncbi.nlm.nih.gov/pubmed/29336219 http://dx.doi.org/10.1089/scd.2017.0113 |
work_keys_str_mv | AT nakamurashogo asymmetricitybetweensistercellsofpluripotentstemcellsattheonsetofdifferentiation AT maruyamaatsushi asymmetricitybetweensistercellsofpluripotentstemcellsattheonsetofdifferentiation AT kondoyuki asymmetricitybetweensistercellsofpluripotentstemcellsattheonsetofdifferentiation AT kanoayumu asymmetricitybetweensistercellsofpluripotentstemcellsattheonsetofdifferentiation AT desousaolgam asymmetricitybetweensistercellsofpluripotentstemcellsattheonsetofdifferentiation AT iwahashimasahiro asymmetricitybetweensistercellsofpluripotentstemcellsattheonsetofdifferentiation AT hexigbayar asymmetricitybetweensistercellsofpluripotentstemcellsattheonsetofdifferentiation AT akaiketoshihiro asymmetricitybetweensistercellsofpluripotentstemcellsattheonsetofdifferentiation AT lijingyue asymmetricitybetweensistercellsofpluripotentstemcellsattheonsetofdifferentiation AT hayashiyohei asymmetricitybetweensistercellsofpluripotentstemcellsattheonsetofdifferentiation AT ohnumakiyoshi asymmetricitybetweensistercellsofpluripotentstemcellsattheonsetofdifferentiation |