Cargando…
Infrastructure and distributed learning methodology for privacy-preserving multi-centric rapid learning health care: euroCAT
Machine learning applications for personalized medicine are highly dependent on access to sufficient data. For personalized radiation oncology, datasets representing the variation in the entire cancer patient population need to be acquired and used to learn prediction models. Ethical and legal bound...
Autores principales: | Deist, Timo M., Jochems, A., van Soest, Johan, Nalbantov, Georgi, Oberije, Cary, Walsh, Seán, Eble, Michael, Bulens, Paul, Coucke, Philippe, Dries, Wim, Dekker, Andre, Lambin, Philippe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833935/ https://www.ncbi.nlm.nih.gov/pubmed/29594204 http://dx.doi.org/10.1016/j.ctro.2016.12.004 |
Ejemplares similares
-
Developing and Validating a Survival Prediction Model for NSCLC Patients Through Distributed Learning Across 3 Countries
por: Jochems, Arthur, et al.
Publicado: (2017) -
Big Data in radiation therapy: challenges and opportunities
por: Lustberg, Tim, et al.
Publicado: (2017) -
Registries of congenital anomalies: EUROCAT.
por: Lechat, M F, et al.
Publicado: (1993) -
Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers
por: Deist, Timo M., et al.
Publicado: (2018) -
Rapid learning in practice: A lung cancer survival decision support system in routine patient care data
por: Dekker, Andre, et al.
Publicado: (2014)