Cargando…
A machine learning approach for automated assessment of retinal vasculature in the oxygen induced retinopathy model
Preclinical studies of vascular retinal diseases rely on the assessment of developmental dystrophies in the oxygen induced retinopathy rodent model. The quantification of vessel tufts and avascular regions is typically computed manually from flat mounted retinas imaged using fluorescent probes that...
Autores principales: | Mazzaferri, Javier, Larrivée, Bruno, Cakir, Bertan, Sapieha, Przemyslaw, Costantino, Santiago |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5834630/ https://www.ncbi.nlm.nih.gov/pubmed/29500375 http://dx.doi.org/10.1038/s41598-018-22251-7 |
Ejemplares similares
-
An Automated Tracking Approach for Extraction of Retinal Vasculature in Fundus Images
por: Osareh, Alireza, et al.
Publicado: (2010) -
Modular machine learning for Alzheimer's disease classification from retinal vasculature
por: Tian, Jianqiao, et al.
Publicado: (2021) -
Novel Anti-Interleukin-1β Therapy Preserves Retinal Integrity: A Longitudinal Investigation Using OCT Imaging and Automated Retinal Segmentation in Small Rodents
por: Sayah, Diane N., et al.
Publicado: (2020) -
Neurons and guidance cues in retinal vascular diseases
por: Wilson, Ariel, et al.
Publicado: (2016) -
A Haptotaxis Assay for Neutrophils using Optical Patterning and a High-content Approach
por: Roy, Joannie, et al.
Publicado: (2017)