Cargando…
Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain
DNA methylation is an important epigenetic modification involved in gene regulation and transposable element silencing. Changes in DNA methylation can be heritable and, thus, can lead to the formation of stable epialleles. A well-characterized example of a stable epiallele in plants is fwa, which co...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5834696/ https://www.ncbi.nlm.nih.gov/pubmed/29444862 http://dx.doi.org/10.1073/pnas.1716945115 |
_version_ | 1783303696429350912 |
---|---|
author | Gallego-Bartolomé, Javier Gardiner, Jason Liu, Wanlu Papikian, Ashot Ghoshal, Basudev Kuo, Hsuan Yu Zhao, Jenny Miao-Chi Segal, David J. Jacobsen, Steven E. |
author_facet | Gallego-Bartolomé, Javier Gardiner, Jason Liu, Wanlu Papikian, Ashot Ghoshal, Basudev Kuo, Hsuan Yu Zhao, Jenny Miao-Chi Segal, David J. Jacobsen, Steven E. |
author_sort | Gallego-Bartolomé, Javier |
collection | PubMed |
description | DNA methylation is an important epigenetic modification involved in gene regulation and transposable element silencing. Changes in DNA methylation can be heritable and, thus, can lead to the formation of stable epialleles. A well-characterized example of a stable epiallele in plants is fwa, which consists of the loss of DNA cytosine methylation (5mC) in the promoter of the FLOWERING WAGENINGEN (FWA) gene, causing up-regulation of FWA and a heritable late-flowering phenotype. Here we demonstrate that a fusion between the catalytic domain of the human demethylase TEN-ELEVEN TRANSLOCATION1 (TET1cd) and an artificial zinc finger (ZF) designed to target the FWA promoter can cause highly efficient targeted demethylation, FWA up-regulation, and a heritable late-flowering phenotype. Additional ZF–TET1cd fusions designed to target methylated regions of the CACTA1 transposon also caused targeted demethylation and changes in expression. Finally, we have developed a CRISPR/dCas9-based targeted demethylation system using the TET1cd and a modified SunTag system. Similar to the ZF–TET1cd fusions, the SunTag–TET1cd system is able to target demethylation and activate gene expression when directed to the FWA or CACTA1 loci. Our study provides tools for targeted removal of 5mC at specific loci in the genome with high specificity and minimal off-target effects. These tools provide the opportunity to develop new epialleles for traits of interest, and to reactivate expression of previously silenced genes, transgenes, or transposons. |
format | Online Article Text |
id | pubmed-5834696 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-58346962018-03-06 Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain Gallego-Bartolomé, Javier Gardiner, Jason Liu, Wanlu Papikian, Ashot Ghoshal, Basudev Kuo, Hsuan Yu Zhao, Jenny Miao-Chi Segal, David J. Jacobsen, Steven E. Proc Natl Acad Sci U S A PNAS Plus DNA methylation is an important epigenetic modification involved in gene regulation and transposable element silencing. Changes in DNA methylation can be heritable and, thus, can lead to the formation of stable epialleles. A well-characterized example of a stable epiallele in plants is fwa, which consists of the loss of DNA cytosine methylation (5mC) in the promoter of the FLOWERING WAGENINGEN (FWA) gene, causing up-regulation of FWA and a heritable late-flowering phenotype. Here we demonstrate that a fusion between the catalytic domain of the human demethylase TEN-ELEVEN TRANSLOCATION1 (TET1cd) and an artificial zinc finger (ZF) designed to target the FWA promoter can cause highly efficient targeted demethylation, FWA up-regulation, and a heritable late-flowering phenotype. Additional ZF–TET1cd fusions designed to target methylated regions of the CACTA1 transposon also caused targeted demethylation and changes in expression. Finally, we have developed a CRISPR/dCas9-based targeted demethylation system using the TET1cd and a modified SunTag system. Similar to the ZF–TET1cd fusions, the SunTag–TET1cd system is able to target demethylation and activate gene expression when directed to the FWA or CACTA1 loci. Our study provides tools for targeted removal of 5mC at specific loci in the genome with high specificity and minimal off-target effects. These tools provide the opportunity to develop new epialleles for traits of interest, and to reactivate expression of previously silenced genes, transgenes, or transposons. National Academy of Sciences 2018-02-27 2018-02-14 /pmc/articles/PMC5834696/ /pubmed/29444862 http://dx.doi.org/10.1073/pnas.1716945115 Text en Copyright © 2018 the Author(s). Published by PNAS. http://creativecommons.org/licenses/by/4.0/ This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (http://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | PNAS Plus Gallego-Bartolomé, Javier Gardiner, Jason Liu, Wanlu Papikian, Ashot Ghoshal, Basudev Kuo, Hsuan Yu Zhao, Jenny Miao-Chi Segal, David J. Jacobsen, Steven E. Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain |
title | Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain |
title_full | Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain |
title_fullStr | Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain |
title_full_unstemmed | Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain |
title_short | Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain |
title_sort | targeted dna demethylation of the arabidopsis genome using the human tet1 catalytic domain |
topic | PNAS Plus |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5834696/ https://www.ncbi.nlm.nih.gov/pubmed/29444862 http://dx.doi.org/10.1073/pnas.1716945115 |
work_keys_str_mv | AT gallegobartolomejavier targeteddnademethylationofthearabidopsisgenomeusingthehumantet1catalyticdomain AT gardinerjason targeteddnademethylationofthearabidopsisgenomeusingthehumantet1catalyticdomain AT liuwanlu targeteddnademethylationofthearabidopsisgenomeusingthehumantet1catalyticdomain AT papikianashot targeteddnademethylationofthearabidopsisgenomeusingthehumantet1catalyticdomain AT ghoshalbasudev targeteddnademethylationofthearabidopsisgenomeusingthehumantet1catalyticdomain AT kuohsuanyu targeteddnademethylationofthearabidopsisgenomeusingthehumantet1catalyticdomain AT zhaojennymiaochi targeteddnademethylationofthearabidopsisgenomeusingthehumantet1catalyticdomain AT segaldavidj targeteddnademethylationofthearabidopsisgenomeusingthehumantet1catalyticdomain AT jacobsenstevene targeteddnademethylationofthearabidopsisgenomeusingthehumantet1catalyticdomain |