Cargando…

New metformin derivative HL156A prevents oral cancer progression by inhibiting the insulin‐like growth factor/AKT/mammalian target of rapamycin pathways

Metformin is a biguanide widely prescribed as an antidiabetic drug for type 2 diabetes mellitus patients. The purpose of the present study was to observe the effects of the new metformin derivative, HL156A, on human oral cancer cell and to investigate its possible mechanisms. It was observed that HL...

Descripción completa

Detalles Bibliográficos
Autores principales: Lam, Thuy Giang, Jeong, Yun Soo, Kim, Soo‐A, Ahn, Sang‐Gun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5834796/
https://www.ncbi.nlm.nih.gov/pubmed/29285837
http://dx.doi.org/10.1111/cas.13482
Descripción
Sumario:Metformin is a biguanide widely prescribed as an antidiabetic drug for type 2 diabetes mellitus patients. The purpose of the present study was to observe the effects of the new metformin derivative, HL156A, on human oral cancer cell and to investigate its possible mechanisms. It was observed that HL156A significantly decreased FaDu and YD‐10B cell viability and colony formation in a dose‐dependent way. HL156A also markedly reduced wound closure and migration of FaDu and YD‐10B cells. We observed that HL156A decreased mitochondrial membrane potential and induced reactive oxygen species (ROS) levels and apoptotic cells with caspase‐3 and ‐9 activation. HL156A inhibited the expression and activation of insulin‐like growth factor (IGF)‐1 and its downstream proteins, AKT, mammalian target of rapamycin (mTOR), and ERK1/2. In addition, HL156A activated AMP‐activated protein kinase/nuclear factor kappa B (AMPK‐NF‐κB) signaling of FaDu and YD‐10B cells. A xenograft mouse model further showed that HL156A suppressed AT84 mouse oral tumor growth, accompanied by down‐regulated p‐IGF‐1, p‐mTOR, proliferating cell nuclear antigen (PCNA) and promoted p‐AMPK and TUNEL expression. These results suggest the potential value of the new metformin derivative HL156A as a candidate for a therapeutic modality for the treatment of oral cancer.