Cargando…

Breast cancer: The translation of big genomic data to cancer precision medicine

Cancer is a complex genetic disease that develops from the accumulation of genomic alterations in which germline variations predispose individuals to cancer and somatic alterations initiate and trigger the progression of cancer. For the past 2 decades, genomic research has advanced remarkably, evolv...

Descripción completa

Detalles Bibliográficos
Autores principales: Low, Siew‐Kee, Zembutsu, Hitoshi, Nakamura, Yusuke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5834810/
https://www.ncbi.nlm.nih.gov/pubmed/29215763
http://dx.doi.org/10.1111/cas.13463
Descripción
Sumario:Cancer is a complex genetic disease that develops from the accumulation of genomic alterations in which germline variations predispose individuals to cancer and somatic alterations initiate and trigger the progression of cancer. For the past 2 decades, genomic research has advanced remarkably, evolving from single‐gene to whole‐genome screening by using genome‐wide association study and next‐generation sequencing that contributes to big genomic data. International collaborative efforts have contributed to curating these data to identify clinically significant alterations that could be used in clinical settings. Focusing on breast cancer, the present review summarizes the identification of genomic alterations with high‐throughput screening as well as the use of genomic information in clinical trials that match cancer patients to therapies, which further leads to cancer precision medicine. Furthermore, cancer screening and monitoring were enhanced greatly by the use of liquid biopsies. With the growing data complexity and size, there is much anticipation in exploiting deep machine learning and artificial intelligence to curate integrative “−omics” data to refine the current medical practice to be applied in the near future.