Cargando…

Searching for Clinically Relevant Biomarkers in Geriatric Oncology

Ageing, which is associated with a progressive decline and functional deterioration in multiple organ systems, is highly heterogeneous, both inter- and intraindividually. For this, tailored-made theranostics and optimum patient stratification become fundamental, when decision-making in elderly patie...

Descripción completa

Detalles Bibliográficos
Autores principales: Katsila, Theodora, Patrinos, George P., Kardamakis, Dimitrios
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5835288/
https://www.ncbi.nlm.nih.gov/pubmed/29670897
http://dx.doi.org/10.1155/2018/3793154
Descripción
Sumario:Ageing, which is associated with a progressive decline and functional deterioration in multiple organ systems, is highly heterogeneous, both inter- and intraindividually. For this, tailored-made theranostics and optimum patient stratification become fundamental, when decision-making in elderly patients is considered. In particular, when cancer incidence and cancer-related mortality and morbidity are taken into account, elderly patient care is a public health concern. In this review, we focus on oncogeriatrics and highlight current opportunities and challenges with an emphasis on the unmet need of clinically relevant biomarkers in elderly cancer patients. We performed a literature search on PubMed and Scopus databases for articles published in English between 2000 and 2017 coupled to text mining and analysis. Considering the top insights, we derived from our literature analysis that information knowledge needs to turn into knowledge growth in oncogeriatrics towards clinically relevant biomarkers, cost-effective practices, updated educational schemes for health professionals (in particular, geriatricians and oncologists), and awareness of ethical issues. We conclude with an interdisciplinary call to omics, geriatricians, oncologists, informatics, and policy-makers communities that Big Data should be translated into decision-making in the clinic.