Cargando…
The consequence of NAC on sodium arsenite-induced uterine oxidative stress
Arsenic consumption through drinking water is a worldwide major health problem. Management of arsenic intoxication with invasive, painful therapy using metal chelators is usually used as a conventional treatment strategy in human. In this present study, we examined the efficacy of oral administratio...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5835492/ https://www.ncbi.nlm.nih.gov/pubmed/29511641 http://dx.doi.org/10.1016/j.toxrep.2018.02.003 |
Sumario: | Arsenic consumption through drinking water is a worldwide major health problem. Management of arsenic intoxication with invasive, painful therapy using metal chelators is usually used as a conventional treatment strategy in human. In this present study, we examined the efficacy of oral administration of N-acetyl l-cysteine (NAC) in limiting arsenic-mediated female reproductive disorders and oxidative stress in female Wistar rats. The treatment was continued for 8 days (2 estrus cycles) on rats with sodium arsenite (10 mg/Kg body weight) orally. We examined the electrozymographic imprint of three different enzymatic antioxidants in uterine tissue. Rats fed with sodium arsenite exhibited a significant lessening in the activities of superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx). Uterine DNA breakage, necrosis, ovarian and uterine tissue damage, disruption in steroidogenesis were also found in arsenic treated rats. Co-administration of NAC at different doses (50 mg/kg body weight, 100 mg/kg body weight, respectively) significantly reversed the action of uterine oxidative stress markers like malondialdehyde (MDA), conjugated dienes (CD) and non protein soluble thiol (NPSH); and noticeably improved antioxidant status of the arsenic fed rats. This ultimately resulted in the uterine tissue repairing followed by improvement of ovarian steroidogenesis. However, this effective function of NAC might be crucial for the restoration of arsenic-induced female reproductive organ damage in rats. |
---|