Cargando…
Influence of Pig Farming on the Human Nasal Microbiota: Key Role of Airborne Microbial Communities
It has been hypothesized that the environment can influence the composition of the nasal microbiota. However, the direct influence of pig farming on the anterior and posterior nasal microbiota is unknown. Using a cross-sectional design, pig farms (n = 28) were visited in 2014 to 2015, and nasal swab...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5835734/ https://www.ncbi.nlm.nih.gov/pubmed/29330190 http://dx.doi.org/10.1128/AEM.02470-17 |
_version_ | 1783303856171515904 |
---|---|
author | Kraemer, Julia G. Ramette, Alban Aebi, Suzanne Oppliger, Anne Hilty, Markus |
author_facet | Kraemer, Julia G. Ramette, Alban Aebi, Suzanne Oppliger, Anne Hilty, Markus |
author_sort | Kraemer, Julia G. |
collection | PubMed |
description | It has been hypothesized that the environment can influence the composition of the nasal microbiota. However, the direct influence of pig farming on the anterior and posterior nasal microbiota is unknown. Using a cross-sectional design, pig farms (n = 28) were visited in 2014 to 2015, and nasal swabs from 43 pig farmers and 56 pigs, as well as 27 air samples taken in the vicinity of the pig enclosures, were collected. As controls, nasal swabs from 17 cow farmers and 26 non-animal-exposed individuals were also included. Analyses of the microbiota were performed based on 16S rRNA amplicon sequencing and the DADA2 pipeline to define sequence variants (SVs). We found that pig farming is strongly associated with specific microbial signatures (including alpha- and beta-diversity), which are reflected in the microbiota of the human nose. Furthermore, the microbial communities were more similar within the same farm compared to between the different farms, indicating a specific microbiota pattern for each pig farm. In total, there were 82 SVs that occurred significantly more abundantly in samples from pig farms than from cow farmers and nonexposed individuals (i.e., the core pig farm microbiota). Of these, nine SVs were significantly associated with the posterior part of the human nose. The results strongly indicate that pig farming is associated with a distinct human nose microbiota. Finally, the community structures derived by the DADA2 pipeline showed an excellent agreement with the outputs of the mothur pipeline which was revealed by procrustes analyses. IMPORTANCE The knowledge about the influence of animal keeping on the human microbiome is important. Previous research has shown that pets significantly affect the microbial communities of humans. However, the effect of animal farming on the human microbiota is less clear, although it is known that the air at farms and, in particular, at pig farms is charged with large amounts of dust, bacteria, and fungi. In this study, we simultaneously investigated the nasal microbiota of pigs, humans, and the environment at pig farms. We reveal an enormous impact of pig farming on the human nasal microbiota which is far more pronounced compared to cow farming. In addition, we analyzed the airborne microbiota and found significant associations suggesting an animal-human transmission of the microbiota within pig farms. We also reveal that microbial patterns are farm specific, suggesting that the environment influences animals and humans in a similar manner. |
format | Online Article Text |
id | pubmed-5835734 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-58357342018-03-29 Influence of Pig Farming on the Human Nasal Microbiota: Key Role of Airborne Microbial Communities Kraemer, Julia G. Ramette, Alban Aebi, Suzanne Oppliger, Anne Hilty, Markus Appl Environ Microbiol Environmental Microbiology It has been hypothesized that the environment can influence the composition of the nasal microbiota. However, the direct influence of pig farming on the anterior and posterior nasal microbiota is unknown. Using a cross-sectional design, pig farms (n = 28) were visited in 2014 to 2015, and nasal swabs from 43 pig farmers and 56 pigs, as well as 27 air samples taken in the vicinity of the pig enclosures, were collected. As controls, nasal swabs from 17 cow farmers and 26 non-animal-exposed individuals were also included. Analyses of the microbiota were performed based on 16S rRNA amplicon sequencing and the DADA2 pipeline to define sequence variants (SVs). We found that pig farming is strongly associated with specific microbial signatures (including alpha- and beta-diversity), which are reflected in the microbiota of the human nose. Furthermore, the microbial communities were more similar within the same farm compared to between the different farms, indicating a specific microbiota pattern for each pig farm. In total, there were 82 SVs that occurred significantly more abundantly in samples from pig farms than from cow farmers and nonexposed individuals (i.e., the core pig farm microbiota). Of these, nine SVs were significantly associated with the posterior part of the human nose. The results strongly indicate that pig farming is associated with a distinct human nose microbiota. Finally, the community structures derived by the DADA2 pipeline showed an excellent agreement with the outputs of the mothur pipeline which was revealed by procrustes analyses. IMPORTANCE The knowledge about the influence of animal keeping on the human microbiome is important. Previous research has shown that pets significantly affect the microbial communities of humans. However, the effect of animal farming on the human microbiota is less clear, although it is known that the air at farms and, in particular, at pig farms is charged with large amounts of dust, bacteria, and fungi. In this study, we simultaneously investigated the nasal microbiota of pigs, humans, and the environment at pig farms. We reveal an enormous impact of pig farming on the human nasal microbiota which is far more pronounced compared to cow farming. In addition, we analyzed the airborne microbiota and found significant associations suggesting an animal-human transmission of the microbiota within pig farms. We also reveal that microbial patterns are farm specific, suggesting that the environment influences animals and humans in a similar manner. American Society for Microbiology 2018-03-01 /pmc/articles/PMC5835734/ /pubmed/29330190 http://dx.doi.org/10.1128/AEM.02470-17 Text en Copyright © 2018 Kraemer et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Environmental Microbiology Kraemer, Julia G. Ramette, Alban Aebi, Suzanne Oppliger, Anne Hilty, Markus Influence of Pig Farming on the Human Nasal Microbiota: Key Role of Airborne Microbial Communities |
title | Influence of Pig Farming on the Human Nasal Microbiota: Key Role of Airborne Microbial Communities |
title_full | Influence of Pig Farming on the Human Nasal Microbiota: Key Role of Airborne Microbial Communities |
title_fullStr | Influence of Pig Farming on the Human Nasal Microbiota: Key Role of Airborne Microbial Communities |
title_full_unstemmed | Influence of Pig Farming on the Human Nasal Microbiota: Key Role of Airborne Microbial Communities |
title_short | Influence of Pig Farming on the Human Nasal Microbiota: Key Role of Airborne Microbial Communities |
title_sort | influence of pig farming on the human nasal microbiota: key role of airborne microbial communities |
topic | Environmental Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5835734/ https://www.ncbi.nlm.nih.gov/pubmed/29330190 http://dx.doi.org/10.1128/AEM.02470-17 |
work_keys_str_mv | AT kraemerjuliag influenceofpigfarmingonthehumannasalmicrobiotakeyroleofairbornemicrobialcommunities AT ramettealban influenceofpigfarmingonthehumannasalmicrobiotakeyroleofairbornemicrobialcommunities AT aebisuzanne influenceofpigfarmingonthehumannasalmicrobiotakeyroleofairbornemicrobialcommunities AT oppligeranne influenceofpigfarmingonthehumannasalmicrobiotakeyroleofairbornemicrobialcommunities AT hiltymarkus influenceofpigfarmingonthehumannasalmicrobiotakeyroleofairbornemicrobialcommunities |