Cargando…

Influence of Pig Farming on the Human Nasal Microbiota: Key Role of Airborne Microbial Communities

It has been hypothesized that the environment can influence the composition of the nasal microbiota. However, the direct influence of pig farming on the anterior and posterior nasal microbiota is unknown. Using a cross-sectional design, pig farms (n = 28) were visited in 2014 to 2015, and nasal swab...

Descripción completa

Detalles Bibliográficos
Autores principales: Kraemer, Julia G., Ramette, Alban, Aebi, Suzanne, Oppliger, Anne, Hilty, Markus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5835734/
https://www.ncbi.nlm.nih.gov/pubmed/29330190
http://dx.doi.org/10.1128/AEM.02470-17
_version_ 1783303856171515904
author Kraemer, Julia G.
Ramette, Alban
Aebi, Suzanne
Oppliger, Anne
Hilty, Markus
author_facet Kraemer, Julia G.
Ramette, Alban
Aebi, Suzanne
Oppliger, Anne
Hilty, Markus
author_sort Kraemer, Julia G.
collection PubMed
description It has been hypothesized that the environment can influence the composition of the nasal microbiota. However, the direct influence of pig farming on the anterior and posterior nasal microbiota is unknown. Using a cross-sectional design, pig farms (n = 28) were visited in 2014 to 2015, and nasal swabs from 43 pig farmers and 56 pigs, as well as 27 air samples taken in the vicinity of the pig enclosures, were collected. As controls, nasal swabs from 17 cow farmers and 26 non-animal-exposed individuals were also included. Analyses of the microbiota were performed based on 16S rRNA amplicon sequencing and the DADA2 pipeline to define sequence variants (SVs). We found that pig farming is strongly associated with specific microbial signatures (including alpha- and beta-diversity), which are reflected in the microbiota of the human nose. Furthermore, the microbial communities were more similar within the same farm compared to between the different farms, indicating a specific microbiota pattern for each pig farm. In total, there were 82 SVs that occurred significantly more abundantly in samples from pig farms than from cow farmers and nonexposed individuals (i.e., the core pig farm microbiota). Of these, nine SVs were significantly associated with the posterior part of the human nose. The results strongly indicate that pig farming is associated with a distinct human nose microbiota. Finally, the community structures derived by the DADA2 pipeline showed an excellent agreement with the outputs of the mothur pipeline which was revealed by procrustes analyses. IMPORTANCE The knowledge about the influence of animal keeping on the human microbiome is important. Previous research has shown that pets significantly affect the microbial communities of humans. However, the effect of animal farming on the human microbiota is less clear, although it is known that the air at farms and, in particular, at pig farms is charged with large amounts of dust, bacteria, and fungi. In this study, we simultaneously investigated the nasal microbiota of pigs, humans, and the environment at pig farms. We reveal an enormous impact of pig farming on the human nasal microbiota which is far more pronounced compared to cow farming. In addition, we analyzed the airborne microbiota and found significant associations suggesting an animal-human transmission of the microbiota within pig farms. We also reveal that microbial patterns are farm specific, suggesting that the environment influences animals and humans in a similar manner.
format Online
Article
Text
id pubmed-5835734
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-58357342018-03-29 Influence of Pig Farming on the Human Nasal Microbiota: Key Role of Airborne Microbial Communities Kraemer, Julia G. Ramette, Alban Aebi, Suzanne Oppliger, Anne Hilty, Markus Appl Environ Microbiol Environmental Microbiology It has been hypothesized that the environment can influence the composition of the nasal microbiota. However, the direct influence of pig farming on the anterior and posterior nasal microbiota is unknown. Using a cross-sectional design, pig farms (n = 28) were visited in 2014 to 2015, and nasal swabs from 43 pig farmers and 56 pigs, as well as 27 air samples taken in the vicinity of the pig enclosures, were collected. As controls, nasal swabs from 17 cow farmers and 26 non-animal-exposed individuals were also included. Analyses of the microbiota were performed based on 16S rRNA amplicon sequencing and the DADA2 pipeline to define sequence variants (SVs). We found that pig farming is strongly associated with specific microbial signatures (including alpha- and beta-diversity), which are reflected in the microbiota of the human nose. Furthermore, the microbial communities were more similar within the same farm compared to between the different farms, indicating a specific microbiota pattern for each pig farm. In total, there were 82 SVs that occurred significantly more abundantly in samples from pig farms than from cow farmers and nonexposed individuals (i.e., the core pig farm microbiota). Of these, nine SVs were significantly associated with the posterior part of the human nose. The results strongly indicate that pig farming is associated with a distinct human nose microbiota. Finally, the community structures derived by the DADA2 pipeline showed an excellent agreement with the outputs of the mothur pipeline which was revealed by procrustes analyses. IMPORTANCE The knowledge about the influence of animal keeping on the human microbiome is important. Previous research has shown that pets significantly affect the microbial communities of humans. However, the effect of animal farming on the human microbiota is less clear, although it is known that the air at farms and, in particular, at pig farms is charged with large amounts of dust, bacteria, and fungi. In this study, we simultaneously investigated the nasal microbiota of pigs, humans, and the environment at pig farms. We reveal an enormous impact of pig farming on the human nasal microbiota which is far more pronounced compared to cow farming. In addition, we analyzed the airborne microbiota and found significant associations suggesting an animal-human transmission of the microbiota within pig farms. We also reveal that microbial patterns are farm specific, suggesting that the environment influences animals and humans in a similar manner. American Society for Microbiology 2018-03-01 /pmc/articles/PMC5835734/ /pubmed/29330190 http://dx.doi.org/10.1128/AEM.02470-17 Text en Copyright © 2018 Kraemer et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Environmental Microbiology
Kraemer, Julia G.
Ramette, Alban
Aebi, Suzanne
Oppliger, Anne
Hilty, Markus
Influence of Pig Farming on the Human Nasal Microbiota: Key Role of Airborne Microbial Communities
title Influence of Pig Farming on the Human Nasal Microbiota: Key Role of Airborne Microbial Communities
title_full Influence of Pig Farming on the Human Nasal Microbiota: Key Role of Airborne Microbial Communities
title_fullStr Influence of Pig Farming on the Human Nasal Microbiota: Key Role of Airborne Microbial Communities
title_full_unstemmed Influence of Pig Farming on the Human Nasal Microbiota: Key Role of Airborne Microbial Communities
title_short Influence of Pig Farming on the Human Nasal Microbiota: Key Role of Airborne Microbial Communities
title_sort influence of pig farming on the human nasal microbiota: key role of airborne microbial communities
topic Environmental Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5835734/
https://www.ncbi.nlm.nih.gov/pubmed/29330190
http://dx.doi.org/10.1128/AEM.02470-17
work_keys_str_mv AT kraemerjuliag influenceofpigfarmingonthehumannasalmicrobiotakeyroleofairbornemicrobialcommunities
AT ramettealban influenceofpigfarmingonthehumannasalmicrobiotakeyroleofairbornemicrobialcommunities
AT aebisuzanne influenceofpigfarmingonthehumannasalmicrobiotakeyroleofairbornemicrobialcommunities
AT oppligeranne influenceofpigfarmingonthehumannasalmicrobiotakeyroleofairbornemicrobialcommunities
AT hiltymarkus influenceofpigfarmingonthehumannasalmicrobiotakeyroleofairbornemicrobialcommunities