Cargando…
Physiological and Proteomic Responses of Contrasting Alfalfa (Medicago sativa L.) Varieties to PEG-Induced Osmotic Stress
Drought severely limits global plant distribution and agricultural production. Elucidating the physiological and molecular mechanisms governing alfalfa stress responses will contribute to the improvement of drought tolerance in leguminous crops. In this study, the physiological and proteomic respons...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5835757/ https://www.ncbi.nlm.nih.gov/pubmed/29541085 http://dx.doi.org/10.3389/fpls.2018.00242 |
_version_ | 1783303857824071680 |
---|---|
author | Zhang, Cuimei Shi, Shangli |
author_facet | Zhang, Cuimei Shi, Shangli |
author_sort | Zhang, Cuimei |
collection | PubMed |
description | Drought severely limits global plant distribution and agricultural production. Elucidating the physiological and molecular mechanisms governing alfalfa stress responses will contribute to the improvement of drought tolerance in leguminous crops. In this study, the physiological and proteomic responses of two alfalfa (Medicago sativa L.) varieties contrasting in drought tolerance, Longzhong (drought-tolerant) and Gannong No. 3 (drought-sensitive), were comparatively assayed when seedlings were exposed to -1.2 MPa polyethylene glycol (PEG-6000) treatments for 15 days. The results showed that the levels of proline, malondialdehyde (MDA), hydrogen peroxide (H(2)O(2)), hydroxyl free radical (OH(•)) and superoxide anion free radical (O(2)(•-)) in both varieties were significantly increased, while the root activity, the superoxide dismutase (SOD) and glutathione reductase (GR) activities, and the ratios of reduced/oxidized ascorbate (AsA/DHA) and reduced/oxidized glutathione (GSH/GSSG) were significantly decreased. The soluble protein and soluble sugar contents, the total antioxidant capability (T-AOC) and the activities of peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) first increased and then decreased with the increase in treatment days. Under osmotic stress, Longzhong exhibited lower levels of MDA, H(2)O(2), OH(•) and O(2)(•-) but higher levels of SOD, CAT, APX, T-AOC and ratios of AsA/DHA and GSH/GSSG compared with Gannong No.3. Using isobaric tags for relative and absolute quantification (iTRAQ), 142 differentially accumulated proteins (DAPs) were identified from two alfalfa varieties, including 52 proteins (34 up-regulated and 18 down-regulated) in Longzhong, 71 proteins (28 up-regulated and 43 down-regulated) in Gannong No. 3, and 19 proteins (13 up-regulated and 6 down-regulated) shared by both varieties. Most of these DAPs were involved in stress and defense, protein metabolism, transmembrane transport, signal transduction, as well as cell wall and cytoskeleton metabolism. In conclusion, the stronger drought-tolerance of Longzhong was attributed to its higher osmotic adjustment capacity, greater ability to orchestrate its enzymatic and non-enzymatic antioxidant systems and thus avoid great oxidative damage in comparison to Gannong No. 3. Moreover, the involvement of other pathways, including carbohydrate metabolism, ROS detoxification, secondary metabolism, protein processing, ion and water transport, signal transduction, and cell wall adjustment, are important mechanisms for conferring drought tolerance in alfalfa. |
format | Online Article Text |
id | pubmed-5835757 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-58357572018-03-14 Physiological and Proteomic Responses of Contrasting Alfalfa (Medicago sativa L.) Varieties to PEG-Induced Osmotic Stress Zhang, Cuimei Shi, Shangli Front Plant Sci Plant Science Drought severely limits global plant distribution and agricultural production. Elucidating the physiological and molecular mechanisms governing alfalfa stress responses will contribute to the improvement of drought tolerance in leguminous crops. In this study, the physiological and proteomic responses of two alfalfa (Medicago sativa L.) varieties contrasting in drought tolerance, Longzhong (drought-tolerant) and Gannong No. 3 (drought-sensitive), were comparatively assayed when seedlings were exposed to -1.2 MPa polyethylene glycol (PEG-6000) treatments for 15 days. The results showed that the levels of proline, malondialdehyde (MDA), hydrogen peroxide (H(2)O(2)), hydroxyl free radical (OH(•)) and superoxide anion free radical (O(2)(•-)) in both varieties were significantly increased, while the root activity, the superoxide dismutase (SOD) and glutathione reductase (GR) activities, and the ratios of reduced/oxidized ascorbate (AsA/DHA) and reduced/oxidized glutathione (GSH/GSSG) were significantly decreased. The soluble protein and soluble sugar contents, the total antioxidant capability (T-AOC) and the activities of peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) first increased and then decreased with the increase in treatment days. Under osmotic stress, Longzhong exhibited lower levels of MDA, H(2)O(2), OH(•) and O(2)(•-) but higher levels of SOD, CAT, APX, T-AOC and ratios of AsA/DHA and GSH/GSSG compared with Gannong No.3. Using isobaric tags for relative and absolute quantification (iTRAQ), 142 differentially accumulated proteins (DAPs) were identified from two alfalfa varieties, including 52 proteins (34 up-regulated and 18 down-regulated) in Longzhong, 71 proteins (28 up-regulated and 43 down-regulated) in Gannong No. 3, and 19 proteins (13 up-regulated and 6 down-regulated) shared by both varieties. Most of these DAPs were involved in stress and defense, protein metabolism, transmembrane transport, signal transduction, as well as cell wall and cytoskeleton metabolism. In conclusion, the stronger drought-tolerance of Longzhong was attributed to its higher osmotic adjustment capacity, greater ability to orchestrate its enzymatic and non-enzymatic antioxidant systems and thus avoid great oxidative damage in comparison to Gannong No. 3. Moreover, the involvement of other pathways, including carbohydrate metabolism, ROS detoxification, secondary metabolism, protein processing, ion and water transport, signal transduction, and cell wall adjustment, are important mechanisms for conferring drought tolerance in alfalfa. Frontiers Media S.A. 2018-02-28 /pmc/articles/PMC5835757/ /pubmed/29541085 http://dx.doi.org/10.3389/fpls.2018.00242 Text en Copyright © 2018 Zhang and Shi. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Zhang, Cuimei Shi, Shangli Physiological and Proteomic Responses of Contrasting Alfalfa (Medicago sativa L.) Varieties to PEG-Induced Osmotic Stress |
title | Physiological and Proteomic Responses of Contrasting Alfalfa (Medicago sativa L.) Varieties to PEG-Induced Osmotic Stress |
title_full | Physiological and Proteomic Responses of Contrasting Alfalfa (Medicago sativa L.) Varieties to PEG-Induced Osmotic Stress |
title_fullStr | Physiological and Proteomic Responses of Contrasting Alfalfa (Medicago sativa L.) Varieties to PEG-Induced Osmotic Stress |
title_full_unstemmed | Physiological and Proteomic Responses of Contrasting Alfalfa (Medicago sativa L.) Varieties to PEG-Induced Osmotic Stress |
title_short | Physiological and Proteomic Responses of Contrasting Alfalfa (Medicago sativa L.) Varieties to PEG-Induced Osmotic Stress |
title_sort | physiological and proteomic responses of contrasting alfalfa (medicago sativa l.) varieties to peg-induced osmotic stress |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5835757/ https://www.ncbi.nlm.nih.gov/pubmed/29541085 http://dx.doi.org/10.3389/fpls.2018.00242 |
work_keys_str_mv | AT zhangcuimei physiologicalandproteomicresponsesofcontrastingalfalfamedicagosativalvarietiestopeginducedosmoticstress AT shishangli physiologicalandproteomicresponsesofcontrastingalfalfamedicagosativalvarietiestopeginducedosmoticstress |