Cargando…

Synergistic effect of receptor-interacting protein 140 and simvastatin on the inhibition of proliferation and survival of hepatocellular carcinoma cells

Hepatocellular carcinoma is the sixth most prevalent malignant tumor and the third most common cause of cancer-associated mortality. Statins have been investigated for carcinoma prevention and treatment. In addition, receptor-interacting protein 140 (RIP140) has been observed to inhibit the Wnt/β-ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Xia, Kun, Zhang, Panpan, Hu, Jian, Hou, Huan, Xiong, Mingdi, Xiong, Junping, Yan, Nianlong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5835881/
https://www.ncbi.nlm.nih.gov/pubmed/29541202
http://dx.doi.org/10.3892/ol.2018.7831
Descripción
Sumario:Hepatocellular carcinoma is the sixth most prevalent malignant tumor and the third most common cause of cancer-associated mortality. Statins have been investigated for carcinoma prevention and treatment. In addition, receptor-interacting protein 140 (RIP140) has been observed to inhibit the Wnt/β-catenin signaling pathway and cell growth. The present study aimed to investigate whether simvastatin (SV) is able to induce SMCC-7721 cell apoptosis through the Wnt/β-catenin signaling pathway. Initially, a cell model of RIP140 overexpression was established, and then cells were treated with SV. The cell growth, viability and apoptosis were measured by cell counting kit-8 and flow cytometry. Furthermore, the expression levels of RIP140, β-catenin, c-myc and cyclin D1 were detected by reverse transcription-quantitative polymerase chain, western blot analysis and immunofluorescence. The results demonstrated that SV significantly increased the expression of RIP140 in SMCC-7721 cells; however, β-catenin, c-myc and cyclin D1 levels were significantly decreased. Furthermore, the immunofluorescence assay of β-catenin confirmed that SV decreased the content of this protein in SMCC-7721 cells. Notably, RIP140 exerted a synergistic effect on the apoptosis rate induced by SV (RIP140 + SV group), while the alteration in RIP140, β-catenin, c-myc and cyclin D1 levels was more evident in the combination group as compared with the RIP140 or SV alone groups. In conclusion, these results suggested that SV is able to induce the apoptosis of SMCC-7721 cells through the Wnt/β-catenin signaling pathway, as well as that RIP140 and SV exert a synergistic effect on the inhibition of cell proliferation and survival.