Cargando…
Mudskippers and Their Genetic Adaptations to an Amphibious Lifestyle
SIMPLE SUMMARY: Mudskippers are an interesting group of goggle-eyed amphibious fish that can live both in water and on land. They are a useful model for obtaining insights into the genetic mechanisms underlying the terrestrial adaptations of amphibious fish. This review summarizes the morphological...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5836032/ https://www.ncbi.nlm.nih.gov/pubmed/29414871 http://dx.doi.org/10.3390/ani8020024 |
Sumario: | SIMPLE SUMMARY: Mudskippers are an interesting group of goggle-eyed amphibious fish that can live both in water and on land. They are a useful model for obtaining insights into the genetic mechanisms underlying the terrestrial adaptations of amphibious fish. This review summarizes the morphological and physiological modifications of representative mudskippers, and focuses on the recent advancement of genomic studies on their genetic adaptations to the amphibious lifestyle. ABSTRACT: Mudskippers are the largest group of amphibious teleost fish that are uniquely adapted to live on mudflats. During their successful transition from aqueous life to terrestrial living, these fish have evolved morphological and physiological modifications of aerial vision and olfaction, higher ammonia tolerance, aerial respiration, improved immunological defense against terrestrial pathogens, and terrestrial locomotion using protruded pectoral fins. Comparative genomic and transcriptomic data have been accumulated and analyzed for understanding molecular mechanisms of the terrestrial adaptations. Our current review provides a general introduction to mudskippers and recent research advances of their genetic adaptations to the amphibious lifestyle, which will be helpful for understanding the evolutionary transition of vertebrates from water to land. Our insights into the genomes and transcriptomes will also support molecular breeding, functional identification, and natural compound screening. |
---|