Cargando…

Proteomic Analysis of Secretomes of Oncolytic Herpes Simplex Virus-Infected Squamous Cell Carcinoma Cells

Oncolytic herpes simplex virus type 1 (HSV-1) strain RH2 induced immunogenic cell death (ICD) with the release and surface exposure of damage-associated molecular patterns (DAMPs) in squamous cell carcinoma (SCC) SCCVII cells. The supernatants of RH2-infected SCCVII cells also exhibited antitumor ab...

Descripción completa

Detalles Bibliográficos
Autores principales: Tada, Shinya, Hamada, Masakazu, Yura, Yoshiaki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5836060/
https://www.ncbi.nlm.nih.gov/pubmed/29360750
http://dx.doi.org/10.3390/cancers10020028
Descripción
Sumario:Oncolytic herpes simplex virus type 1 (HSV-1) strain RH2 induced immunogenic cell death (ICD) with the release and surface exposure of damage-associated molecular patterns (DAMPs) in squamous cell carcinoma (SCC) SCCVII cells. The supernatants of RH2-infected SCCVII cells also exhibited antitumor ability by intratumoral administration in SCCVII tumor-bearing mice. The supernatants of RH2-infected cells and mock-infected cells were concentrated to produce Med24 and MedC for proteomic analyses. In Med24, the up- and down-regulated proteins were observed. Proteins including filamin, tubulin, t-complex protein 1 (TCP-1), and heat shock proteins (HSPs), were up-regulated, while extracellular matrix (ECM) proteins were markedly down-regulated. Viral proteins were detected in Med 24. These results indicate that HSV-1 RH2 infection increases the release of danger signal proteins and viral gene products, but decreases the release of ECM components. These changes may alter the tumor microenvironment (TME) and contribute to enhancement of anti-tumor immunity against SCC.